We assess the validity of various exchange-correlation functionals for computing the structural, vibrational, dielectric, and thermodynamical properties of materials in the framework of density-functional perturbation...
详细信息
We assess the validity of various exchange-correlation functionals for computing the structural, vibrational, dielectric, and thermodynamical properties of materials in the framework of density-functional perturbation theory (DFPT). We consider five generalized-gradient approximation (GGA) functionals (PBE, PBEsol, WC, AM05, and HTBS) as well as the local density approximation (LDA) functional. We investigate a wide variety of materials including a semiconductor (silicon), a metal (copper), and various insulators (SiO2 α-quartz and stishovite, ZrSiO4 zircon, and MgO periclase). For the structural properties, we find that PBEsol and WC are the closest to the experiments and AM05 performs only slightly worse. All three functionals actually improve over LDA and PBE in contrast with HTBS, which is shown to fail dramatically for α-quartz. For the vibrational and thermodynamical properties, LDA performs surprisingly very well. In the majority of the test cases, it outperforms PBE significantly and also the WC, PBEsol and AM05 functionals though by a smaller margin (and to the detriment of structural parameters). On the other hand, HTBS performs also poorly for vibrational quantities. For the dielectric properties, none of the functionals can be put forward. They all (i) fail to reproduce the electronic dielectric constant due to the well-known band gap problem and (ii) tend to overestimate the oscillator strengths (and hence the static dielectric constant).
In this paper, wave simulation with the finite difference method for the Helmholtz equation based on the domain decomposition method is investigated. The method solves the problem by iteratively solving subproblems de...
详细信息
In this paper, wave simulation with the finite difference method for the Helmholtz equation based on the domain decomposition method is investigated. The method solves the problem by iteratively solving subproblems defined on smaller subdomains. Two domain decomposition algorithms both for nonoverlapping and overlapping methods are described. More numerical computations including the benchmark Marmousi model show the effectiveness of the proposed algorithms. This method can be expected to be used in the full-waveform inversion in the future.
A new wave simulation technique for the elastic wave equation in the frequency domain based on a no overlapping domain decomposition algorithm is investigated. The boundary conditions and the finite difference discrim...
详细信息
A new wave simulation technique for the elastic wave equation in the frequency domain based on a no overlapping domain decomposition algorithm is investigated. The boundary conditions and the finite difference discrimination of the elastic wave equation are derived. The algorithm of no overlapping domain decomposition method is given. The method solves the elastic wave equation by iteratively solving sub problems defined on smaller sub domains. Numerical computations both for homogeneous and inhomogeneous media show the effectiveness of the proposed method. This method can be used in the full-waveform inversion.
In this paper, wave simulation with the finite difference method for the Helmholtz equation based on the domain decomposition method is investigated. The method solves the problem by iteratively solving subproblems de...
详细信息
In this paper, wave simulation with the finite difference method for the Helmholtz equation based on the domain decomposition method is investigated. The method solves the problem by iteratively solving subproblems defined on smaller subdomains. Two domain decomposition algorithms both for nonoverlapping and overlapping methods are described. More numerical computations including the benchmark Marmousi model show the effectiveness of the proposed algorithms. This method can be expected to be used in the full-waveform inversion in the future.
A new wave simulation technique for the elastic wave equation in the frequency domain based on a no overlapping domain decomposition algorithm is investigated. The boundary conditions and the finite difference discrim...
A new wave simulation technique for the elastic wave equation in the frequency domain based on a no overlapping domain decomposition algorithm is investigated. The boundary conditions and the finite difference discrimination of the elastic wave equation are derived. The algorithm of no overlapping domain decomposition method is given. The method solves the elastic wave equation by iteratively solving sub problems defined on smaller sub domains. Numerical computations both for homogeneous and inhomogeneous media show the effectiveness of the proposed method. This method can be used in the full-waveform inversion.
Full-waveform velocity inversion based on the acoustic wave equation in the time domain is investigated in this paper. The inversion is the iterative minimization of the misfit between observed data and synthetic data...
Full-waveform velocity inversion based on the acoustic wave equation in the time domain is investigated in this paper. The inversion is the iterative minimization of the misfit between observed data and synthetic data obtained by a numerical solution of the wave equation. Two inversion algorithms in combination with the CG method and the BFGS method are described respectively. Numerical computations for two models including the benchmark Marmousi model with complex structure are implemented. The inversion results show that the BFGS-based algorithm behaves better in inversion than the CG-based algorithm does. Moreover, the good inversion result for Marmousi model with the BFGS-based algorithm suggests the quasi-Newton methods can provide an important tool for large-scale velocity inversion. More computations demonstrate the correctness and effectives of our inversion algorithms and code.
Full-waveform velocity inversion based on the acoustic wave equation in the time domain is investigated in this paper. The inversion is the iterative minimization of the misfit between observed data and synthetic data...
详细信息
Full-waveform velocity inversion based on the acoustic wave equation in the time domain is investigated in this paper. The inversion is the iterative minimization of the misfit between observed data and synthetic data obtained by a numerical solution of the wave equation. Two inversion algorithms in combination with the CG method and the BFGS method are described respectively. Numerical computations for two models including the benchmark Marmousi model with complex structure are implemented. The inversion results show that the BFGS-based algorithm behaves better in inversion than the CG-based algorithm does. Moreover, the good inversion result for Marmousi model with the BFGS-based algorithm suggests the quasi-Newton methods can provide an important tool for large-scale velocity inversion. More computations demonstrate the correctness and effectives of our inversion algorithms and code.
This paper studied subspace properties of the Celis–Dennis–Tapia(CDT)subproblem that arises in some trust-region algorithms for equality constrained opti*** analysis is an extension of that presented by Wang and Yu...
详细信息
This paper studied subspace properties of the Celis–Dennis–Tapia(CDT)subproblem that arises in some trust-region algorithms for equality constrained opti*** analysis is an extension of that presented by Wang and Yuan(***.104:241–269,2006)for the standard trust-region *** suitable conditions,it is shown that the trial step obtained from the CDT subproblem is in the subspace spanned by all the gradient vectors of the objective function and of the constraints computed until the current *** on this observation,a subspace version of the Powell–Yuan trust-region algorithm is proposed for equality constrained optimization problems where the number of constraints is much lower than the number of variables. The convergence analysis is given and numerical results arealso reported.
Difference equations or discrete systems are mathematical models of various fields such as physics, chemistry, biology, and economics and have been subjects of extensive study of both pure mathematicians and applied m...
详细信息
Difference equations or discrete systems are mathematical models of various fields such as physics, chemistry, biology, and economics and have been subjects of extensive study of both pure mathematicians and applied mathematicians. Through its interaction with modern integrable systems, the theory of difference equations is enriched greatly and has been undergoing a rapid development. SIDE-10, the tenth of a series of biennial conferences devoted to Symmetries and Integrability of Difference Equations and related topics, was held during 10-16 June, 2012 at Ningbo, China. It was sponsored and supported by the National Natural science Foundation of China, Ningbo Association of science and Technology, Ningbo University, Academy of Mathematics and Systems science of Chinese Academy of sciences, China University of Mining and Technology (Beijing), Tsinghua University, and Shanghai University. The conference attracted over 100 participants from more than a dozen of countries. During the conference, 44 contributed talks were arranged and the topics covered by the meeting include
暂无评论