Resolvers are widely employed as position sensors to detect both rotational and linear displacement. Among the various types, wound rotor resolvers offer superior accuracy in absolute measurements, especially under me...
详细信息
Accurate measurement of the three-dimensional(3D)movement of discrete particles is crucial for comprehending complex granular rheology in *** this paper,the acceleration and angular velocity of particles in 3D silos a...
详细信息
Accurate measurement of the three-dimensional(3D)movement of discrete particles is crucial for comprehending complex granular rheology in *** this paper,the acceleration and angular velocity of particles in 3D silos are measured by using a spherical detector based on inertial technology and magnetic positioning *** acceleration of particles is the largest in the center of silos,which suggest that the resistance generated by friction and extrusion is the ***,the angular velocity distribution follows lognormal function except for particles near the *** correlation between acceleration and angular velocity is opposite in different flow *** reveals for the first time that the extent to which the resultant force on the particles affects their rotational motion is related to the flow *** results have practical significance for regulating the granular flow pattern and optimizing the structural design of silos.
Purpose: The rapid spread of COVID-19 has resulted in significant harm and impacted tens of millions of people globally. In order to prevent the transmission of the virus, individuals often wear masks as a protective ...
详细信息
Optoelectronic devices are advantageous in in-memory light sensing for visual information processing,recognition,and storage in an energy-efficient ***,in-memory light sensors have been proposed to improve the energy,...
详细信息
Optoelectronic devices are advantageous in in-memory light sensing for visual information processing,recognition,and storage in an energy-efficient ***,in-memory light sensors have been proposed to improve the energy,area,and time efficiencies of neuromorphic computing *** study is primarily focused on the development of a single sensing-storage-processing node based on a two-terminal solution-processable MoS2 metal-oxide-semiconductor(MOS)charge-trapping memory structure—the basic structure for charge-coupled devices(CCD)—and showing its suitability for in-memory light sensing and artificial visual *** memory window of the device increased from 2.8 V to more than 6V when the device was irradiated with optical lights of different wavelengths during the program ***,the charge retention capability of the device at a high temperature(100 ℃)was enhanced from 36 to 64%when exposed to a light wavelength of 400 *** larger shift in the threshold voltage with an increasing operating voltage confirmed that more charges were trapped at the Al_(2)O_(3)/MoS_(2) interface and in the MoS_(2) layer.A small convolutional neural network was proposed to measure the optical sensing and electrical programming abilities of the *** array simulation received optical images transmitted using a blue light wavelength and performed inference computation to process and recognize the images with 91%*** study is a significant step toward the development of optoelectronic MOS memory devices for neuromorphic visual perception,adaptive parallel processing networks for in-memory light sensing,and smart CCD cameras with artificial visual perception capabilities.
In recent years, the traffic congestion problem has become more and more serious, and the research on traffic system control has become a new hot spot. Studying the bifurcation characteristics of traffic flow systems ...
详细信息
In recent years, the traffic congestion problem has become more and more serious, and the research on traffic system control has become a new hot spot. Studying the bifurcation characteristics of traffic flow systems and designing control schemes for unstable pivots can alleviate the traffic congestion problem from a new perspective. In this work, the full-speed differential model considering the vehicle network environment is improved in order to adjust the traffic flow from the perspective of bifurcation control, the existence conditions of Hopf bifurcation and saddle-node bifurcation in the model are proved theoretically, and the stability mutation point for the stability of the transportation system is found. For the unstable bifurcation point, a nonlinear system feedback controller is designed by using Chebyshev polynomial approximation and stochastic feedback control method. The advancement, postponement, and elimination of Hopf bifurcation are achieved without changing the system equilibrium point, and the mutation behavior of the transportation system is controlled so as to alleviate the traffic congestion. The changes in the stability of complex traffic systems are explained through the bifurcation analysis, which can better capture the characteristics of the traffic flow. By adjusting the control parameters in the feedback controllers, the influence of the boundary conditions on the stability of the traffic system is adequately described, and the effects of the unstable focuses and saddle points on the system are suppressed to slow down the traffic flow. In addition, the unstable bifurcation points can be eliminated and the Hopf bifurcation can be controlled to advance, delay, and disappear,so as to realize the control of the stability behavior of the traffic system, which can help to alleviate the traffic congestion and describe the actual traffic phenomena as well.
Artificial Intelligence, including machine learning and deep convolutional neural networks (DCNNs), relies on complex algorithms and neural networks to process and analyze data. DCNNs for visual recognition often requ...
详细信息
The extraction of atomic-level material features from electron microscope images is crucial for studying structure-property relationships and discovering new materials. However, traditional electron microscope analyse...
详细信息
The extraction of atomic-level material features from electron microscope images is crucial for studying structure-property relationships and discovering new materials. However, traditional electron microscope analyses rely on time-consuming and complex human operations; thus, they are only applicable to images with a small number of atoms. In addition, the analysis results vary due to observers' individual deviations. Although efforts to introduce automated methods have been performed previously, many of these methods lack sufficient labeled data or require various conditions in the detection process that can only be applied to the target material. Thus, in this study, we developed AtomGAN, which is a robust, unsupervised learning method, that segments defects in classical 2D material systems and the heterostructures of MoS2/WS2automatically. To solve the data scarcity problem, the proposed model is trained on unpaired simulated data that contain point and line defects for MoS2/WS2. The proposed AtomGAN was evaluated on both simulated and real electron microscope images. The results demonstrate that the segmented point defects and line defects are presented perfectly in the resulting figures, with a measurement precision of 96.9%. In addition, the cycled structure of AtomGAN can quickly generate a large number of simulated electron microscope images.
With the increasing number of edited videos, many robust video fingerprinting schemes have been proposed to solve the problem of video content authentication. However, most of them either deal with the temporal and sp...
详细信息
Knowledge distillation has demonstrated significant potential in addressing the challenge of unsupervised anomaly detection (AD). The representation discrepancy of anomalies in the teacher–student (T-S) model pr...
详细信息
Federated recommender systems(FedRecs) have garnered increasing attention recently, thanks to their privacypreserving benefits. However, the decentralized and open characteristics of current FedRecs present at least t...
详细信息
Federated recommender systems(FedRecs) have garnered increasing attention recently, thanks to their privacypreserving benefits. However, the decentralized and open characteristics of current FedRecs present at least two ***, the performance of FedRecs is compromised due to highly sparse on-device data for each client. Second, the system's robustness is undermined by the vulnerability to model poisoning attacks launched by malicious users. In this paper, we introduce a novel contrastive learning framework designed to fully leverage the client's sparse data through embedding augmentation, referred to as CL4FedRec. Unlike previous contrastive learning approaches in FedRecs that necessitate clients to share their private parameters, our CL4FedRec aligns with the basic FedRec learning protocol, ensuring compatibility with most existing FedRec implementations. We then evaluate the robustness of FedRecs equipped with CL4FedRec by subjecting it to several state-of-the-art model poisoning attacks. Surprisingly, our observations reveal that contrastive learning tends to exacerbate the vulnerability of FedRecs to these attacks. This is attributed to the enhanced embedding uniformity, making the polluted target item embedding easily proximate to popular items. Based on this insight, we propose an enhanced and robust version of CL4FedRec(rCL4FedRec) by introducing a regularizer to maintain the distance among item embeddings with different popularity levels. Extensive experiments conducted on four commonly used recommendation datasets demonstrate that rCL4FedRec significantly enhances both the model's performance and the robustness of FedRecs.
暂无评论