Roadside units (RSUs) with strong sensing abilities enhance the feasibility of the RSU-to-Everything (R2X) paradigm, providing crucial infrastructure support for mobile edge computing and reducing data processing late...
详细信息
In this paper, Fog-based IoT-enabled electrical vehicles connected with smart grid systems and propose a reference model that integrates fog computing concepts for electrical vehicles connected with smart grids. Due t...
详细信息
Breast cancer is a significant health concern;early detection and treatment are critical to improving patient outcomes. Artificial Intelligence has the potential to assist healthcare professionals in the diagnosis and...
详细信息
The creation of new approaches to the design and configuration of smart buildings relies heavily on AI tools and Machine Learning (ML) algorithms, particularly optimization techniques. The widespread use of electronic...
详细信息
Fog computing is a key enabling technology of 6G systems as it provides quick and reliable computing,and data storage services which are required for several 6G *** Intelligence(AI)algorithms will be an integral part ...
详细信息
Fog computing is a key enabling technology of 6G systems as it provides quick and reliable computing,and data storage services which are required for several 6G *** Intelligence(AI)algorithms will be an integral part of 6G systems and efficient task offloading techniques using fog computing will improve their performance and *** this paper,the focus is on the scenario of Partial Offloading of a Task to Multiple Helpers(POMH)in which larger tasks are divided into smaller subtasks and processed in parallel,hence expediting task ***,using POMH presents challenges such as breaking tasks into subtasks and scaling these subtasks based on many interdependent factors to ensure that all subtasks of a task finish simultaneously,preventing resource ***,applying matching theory to POMH scenarios results in dynamic preference profiles of helping devices due to changing subtask sizes,resulting in a difficult-to-solve,externalities *** paper introduces a novel many-to-one matching-based algorithm,designed to address the externalities problem and optimize resource allocation within POMH ***,we propose a new time-efficient preference profiling technique that further enhances time optimization in POMH *** performance of the proposed technique is thoroughly evaluated in comparison to alternate baseline schemes,revealing many advantages of the proposed *** simulation findings indisputably show that the proposed matching-based offloading technique outperforms existing methodologies in the literature,yielding a remarkable 52 reduction in task latency,particularly under high workloads.
Currently,mobile communication is one of the widely used means of ***,it is quite challenging for a telecommunication company to attract new *** recent concept of mobile number portability has also aggravated the pro...
详细信息
Currently,mobile communication is one of the widely used means of ***,it is quite challenging for a telecommunication company to attract new *** recent concept of mobile number portability has also aggravated the problem of customer *** need to identify beforehand the customers,who could potentially churn out to the *** the telecommunication industry,such identification could be done based on call detail *** research presents an extensive experimental study based on various deep learning models,such as the 1D convolutional neural network(CNN)model along with the recurrent neural network(RNN)and deep neural network(DNN)for churn *** use the mobile telephony churn prediction dataset obtained from ***,containing the data for around 100,000 individuals,out of which 86,000 are non-churners,whereas 14,000 are churned *** imbalanced data are handled using undersampling and *** accuracy for CNN,RNN,and DNN is 91%,93%,and 96%,***,DNN got 99%for ROC.
Integrating deep learning methods into metaheuristic algorithms has gained attention for addressing design-related issues and enhancing performance. The primary objective is to improve solution quality and convergence...
详细信息
Accurate and timely diagnosis of pulmonary diseases is critical in the field of medical imaging. While deep learning models have shown promise in this regard, the current methods for developing such models often requi...
详细信息
Accurate and timely diagnosis of pulmonary diseases is critical in the field of medical imaging. While deep learning models have shown promise in this regard, the current methods for developing such models often require extensive computing resources and complex procedures, rendering them impractical. This study focuses on the development of a lightweight deep-learning model for the detection of pulmonary diseases. Leveraging the benefits of knowledge distillation (KD) and the integration of the ConvMixer block, we propose a novel lightweight student model based on the MobileNet architecture. The methodology begins with training multiple teacher model candidates to identify the most suitable teacher model. Subsequently, KD is employed, utilizing the insights of this robust teacher model to enhance the performance of the student model. The objective is to reduce the student model's parameter size and computational complexity while preserving its diagnostic accuracy. We perform an in-depth analysis of our proposed model's performance compared to various well-established pre-trained student models, including MobileNetV2, ResNet50, InceptionV3, Xception, and NasNetMobile. Through extensive experimentation and evaluation across diverse datasets, including chest X-rays of different pulmonary diseases such as pneumonia, COVID-19, tuberculosis, and pneumothorax, we demonstrate the robustness and effectiveness of our proposed model in diagnosing various chest infections. Our model showcases superior performance, achieving an impressive classification accuracy of 97.92%. We emphasize the significant reduction in model complexity, with 0.63 million parameters, allowing for efficient inference and rapid prediction times, rendering it ideal for resource-constrained environments. Outperforming various pre-trained student models in terms of overall performance and computation cost, our findings underscore the effectiveness of the proposed KD strategy and the integration of the Conv
To predict the lithium-ion(Li-ion)battery degradation trajectory in the early phase,arranging the maintenance of battery energy storage systems is of great ***,under different operation conditions,Li-ion batteries pre...
详细信息
To predict the lithium-ion(Li-ion)battery degradation trajectory in the early phase,arranging the maintenance of battery energy storage systems is of great ***,under different operation conditions,Li-ion batteries present distinct degradation patterns,and it is challenging to capture negligible capacity fade in early *** the data-driven method showing promising performance,insufficient data is still a big issue since the ageing experiments on the batteries are too slow and *** this study,we proposed twin autoencoders integrated into a two-stage method to predict the early cycles'degradation *** two-stage method can properly predict the degradation from course to *** twin autoencoders serve as a feature extractor and a synthetic data generator,***,a learning procedure based on the long-short term memory(LSTM)network is designed to hybridize the learning process between the real and synthetic *** performance of the proposed method is verified on three datasets,and the experimental results show that the proposed method can achieve accurate predictions compared to its competitors.
暂无评论