咨询与建议

限定检索结果

文献类型

  • 774 篇 期刊文献
  • 756 篇 会议
  • 1 册 图书

馆藏范围

  • 1,531 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 998 篇 工学
    • 750 篇 计算机科学与技术...
    • 618 篇 软件工程
    • 231 篇 信息与通信工程
    • 139 篇 生物工程
    • 136 篇 控制科学与工程
    • 128 篇 电气工程
    • 83 篇 生物医学工程(可授...
    • 69 篇 机械工程
    • 69 篇 光学工程
    • 67 篇 电子科学与技术(可...
    • 43 篇 仪器科学与技术
    • 43 篇 化学工程与技术
    • 38 篇 交通运输工程
    • 36 篇 网络空间安全
    • 29 篇 动力工程及工程热...
    • 23 篇 安全科学与工程
  • 540 篇 理学
    • 314 篇 数学
    • 156 篇 生物学
    • 102 篇 统计学(可授理学、...
    • 88 篇 物理学
    • 54 篇 系统科学
    • 47 篇 化学
  • 309 篇 管理学
    • 179 篇 管理科学与工程(可...
    • 154 篇 图书情报与档案管...
    • 59 篇 工商管理
  • 74 篇 医学
    • 61 篇 临床医学
    • 54 篇 基础医学(可授医学...
    • 37 篇 药学(可授医学、理...
  • 48 篇 法学
    • 40 篇 社会学
  • 27 篇 经济学
    • 26 篇 应用经济学
  • 27 篇 农学
  • 13 篇 教育学
  • 3 篇 艺术学
  • 1 篇 文学

主题

  • 68 篇 semantics
  • 68 篇 feature extracti...
  • 58 篇 training
  • 46 篇 deep learning
  • 38 篇 predictive model...
  • 35 篇 computational mo...
  • 33 篇 accuracy
  • 31 篇 convolution
  • 31 篇 machine learning
  • 30 篇 data models
  • 27 篇 graph neural net...
  • 25 篇 contrastive lear...
  • 21 篇 federated learni...
  • 20 篇 task analysis
  • 20 篇 image segmentati...
  • 20 篇 neural networks
  • 20 篇 visualization
  • 19 篇 convolutional ne...
  • 18 篇 deep neural netw...
  • 17 篇 object detection

机构

  • 72 篇 beijing advanced...
  • 58 篇 shandong provinc...
  • 52 篇 key laboratory o...
  • 46 篇 shandong enginee...
  • 41 篇 national enginee...
  • 38 篇 school of comput...
  • 38 篇 school of cyber ...
  • 34 篇 chongqing key la...
  • 32 篇 key laboratory o...
  • 31 篇 guangdong key la...
  • 29 篇 school of big da...
  • 29 篇 university of ch...
  • 29 篇 peng cheng labor...
  • 27 篇 national enginee...
  • 26 篇 hubei key labora...
  • 26 篇 hubei engineerin...
  • 24 篇 services computi...
  • 24 篇 cluster and grid...
  • 24 篇 school of comput...
  • 23 篇 college of compu...

作者

  • 32 篇 jin hai
  • 27 篇 wang guoyin
  • 22 篇 huang qingming
  • 22 篇 hai jin
  • 20 篇 shen linlin
  • 20 篇 xu qianqian
  • 18 篇 hu shengshan
  • 17 篇 chen yanping
  • 15 篇 yang zhiyong
  • 15 篇 chen huajun
  • 15 篇 liu ya-feng
  • 14 篇 huang sheng
  • 14 篇 wu di
  • 14 篇 zhang leo yu
  • 13 篇 li jianxin
  • 13 篇 li minghui
  • 13 篇 yanping chen
  • 13 篇 zhou yipeng
  • 12 篇 shang mingsheng
  • 12 篇 xia shuyin

语言

  • 1,433 篇 英文
  • 81 篇 其他
  • 35 篇 中文
检索条件"机构=Hebei Key Laboratory of Big Data Computing"
1531 条 记 录,以下是91-100 订阅
排序:
LLM Knows Geometry Better than Algebra: Numerical Understanding of LLM-Based Agents in A Trading Arena
arXiv
收藏 引用
arXiv 2025年
作者: Ma, Tianmi Du, Jiawei Huang, Wenxin Wang, Wenjie Xie, Liang Zhong, Xian Zhou, Joey Tianyi Hubei Key Laboratory of Transportation Internet of Things Wuhan University of Technology China Hubei Key Laboratory of Big Data Intelligent Analysis and Application Hubei University China Centre for Frontier AI Research Agency for Science Technology and Research Singapore Institute of High Performance Computing Agency for Science Technology and Research Singapore School of Computing National University of Singapore Singapore School of Science Wuhan University of Technology China
Recent advancements in large language models (LLMs) have significantly improved performance in natural language processing tasks. However, their ability to generalize to dynamic, unseen tasks, particularly in numerica... 详细信息
来源: 评论
Multi-agent Collaboration for Vehicular Task Offloading Using Federated Deep Reinforcement Learning
收藏 引用
IEEE Transactions on Mobile computing 2025年
作者: Chen, Xing Xiao, Bohuai Lin, Xinyu Chen, Zheyi Min, Geyong Fuzhou University College of Computer and Data Science Fuzhou350116 China Ministry of Education Engineering Research Center of Big Data Intelligence Fuzhou350002 China Fuzhou University Fujian Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou350116 China University of Exeter Department of Computer Science ExeterEX4 4QF United Kingdom
Mobile Edge computing (MEC) distributes resources such as computing, storage, and bandwidth to the side close to users, which can provide low-latency services to in-vehicle users, thus promising a more efficient and s... 详细信息
来源: 评论
PEFN: A Patches Enhancement and Hierarchical Fusion Network for Robust Vehicle Re-Identification
收藏 引用
IEEE Internet of Things Journal 2025年
作者: He, Wenying Wang, Feiyu Bai, Yude Xiong, Neal N. Xu, Guangquan Guo, Fei Hebei University of Technology School of Artificial Intelligence Tianjin300401 China Hebei University of Technology Hebei Province Key Laboratory of Big Data Calculation Tianjin300130 China Tiangong University School of Software Tianjin300387 China Northeastern State University Department of Mathematics and Computer Science TahlequahOK74464 United States Tianjin300350 China Central South University School of Computer Science and Engineering Changsha410083 China
Vehicle Re-Identification (Re-ID), which is a significant application in the Internet of Things, aims to accurately retrieve the remaining images of a given vehicle across different cameras views. The improvement in v... 详细信息
来源: 评论
A Bi-selection Method Based on Consistent Matrix for Large-Scale datasets
收藏 引用
IEEE Transactions on Fuzzy Systems 2025年
作者: Quan, Jinsheng Qiao, Fengcai Yang, Tian Shen, Shuo Qian, Yuhua Hunan Normal University Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing Institute of Interdisciplinary Studies Changsha410081 China National University of Defense Technology College of Advanced Interdisciplinary Studies Changsha410081 China Shanxi University Institute of Big Data Science and Industry Taiyuan030006 China
Biselection (feature and sample selection) enhances the efficiency and accuracy of machine learning models when handling large-scale data. Fuzzy rough sets, an uncertainty mathematics model known for its excellent int... 详细信息
来源: 评论
A Fusion Tuning Method for Named Entity Recognition  12th
A Fusion Tuning Method for Named Entity Recognition
收藏 引用
12th CCF Conference on bigdata, bigdata 2024
作者: Wang, Jitian Chen, Yanping Zou, Anqi Qin, Yongbin Huang, Ruizhang Text Computing and Cognitive Intelligence Engineering Research Center of National Education Ministry Guizhou University Guiyang550025 China State Key Laboratory of Public Big Data Guizhou University Guiyang China College of Computer Science and Technology Guizhou University Guiyang550025 China
In named entity recognition, the main methods for constructing deep neural networks are fine-tuning and prompt tuning. Fine-tuning is a commonly used paradigm to optimize neural networks by using task-specific objecti... 详细信息
来源: 评论
QoS-Based Beamforming and Compression Design for Cooperative Cellular Networks via Lagrangian Duality
收藏 引用
IEEE Transactions on Signal Processing 2025年
作者: Fan, Xilai Liu, Ya-Feng Liu, Liang Chang, Tsung-Hui Chinese Academy of Sciences State Key Laboratory of Scientific and Engineering Computing Institute of Computational Mathematics and Scientific/Engineering Computing Academy of Mathematics and Systems Science Beijing100190 China The Hong Kong Polytechnic University Department of Electronic and Information Engineering Hong Kong Hong Kong The Chinese University of HongKong School of Science and Engineering Shenzhen Shenzhen China Shenzhen Research Institute of Big Data China
This paper considers the quality-of-service (QoS)-based joint beamforming and compression design problem in the downlink cooperative cellular network, where multiple relay-like base stations (BSs), connected to the ce... 详细信息
来源: 评论
CMCache: An Adaptive Cross-Level data Placement Method for Multi-Level Cache
收藏 引用
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 2025年
作者: Zeng, Zhaoyang Tan, Yujuan Ma, Zhulin Li, Jiali Zhao, Sanle Liu, Duo Chen, Xianzhang Ren, Ao Chongqing University College of Computer Science Chongqing400044 China Chongqing University Key Laboratory of Dependable Service Computing in Cyber Physical Society Ministry of Education Chongqing400044 China Chongqing Universityof Posts and Telecommunications College of Software Engineering China Chongqing University College of Big Data and Software Engineering Chongqing China
Multi-level cache systems enhance I/O performance by optimizing data placement across various cache levels from a global perspective. However, existing methods often struggle to place data at the optimal cache level p... 详细信息
来源: 评论
NOBGP: A Novel Optimized Balanced Graph Partitioning Algorithm  19th
NOBGP: A Novel Optimized Balanced Graph Partitioning Algorit...
收藏 引用
19th CCF Conference on Computer Supported Cooperative Work and Social computing, ChineseCSCW 2024
作者: Chen, Jiebin Hu, Ziqiang Ye, Renjie Zhang, Qishan Guo, Kun College of Computer and Data Science Fuzhou University Fuzhou350108 China Engineering Research Center of Big Data Intelligence Ministry of Education Fuzhou350108 China Fujian Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou350108 China Xianda College of Economics and Humanities Shanghai International Studies University Shanghai China
Large-scale graphs have become prevalent with the advent of the big data era. Distributed graph computing systems are commonly used for processing and analyzing large-scale graphs, with graph partitioning being a key ... 详细信息
来源: 评论
Fence Theorem: Towards Dual-Objective Semantic-Structure Isolation in Preprocessing Phase for 3D Anomaly Detection
arXiv
收藏 引用
arXiv 2025年
作者: Liang, Hanzhe Zhou, Jie Chen, Xuanxin Dai, Tao Wang, Jinbao Gao, Can College of Computer Science and Software Engineering Shenzhen University China Shenzhen Audencia Financial Technology Institute Shenzhen University China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University China Faculty of Education Shenzhen University China Guangdong Provincial Key Laboratory of Intelligent Information Processing China
3D anomaly detection (AD) is prominent but difficult due to lacking a unified theoretical foundation for preprocessing design. We establish the Fence Theorem, formalizing preprocessing as a dual-objective semantic iso... 详细信息
来源: 评论
Discovering optimal Markov blanket for high-dimensional streaming features
收藏 引用
Information Sciences 2025年 716卷
作者: Khan, Waqar Brekhna, Brekhna Xie, Yajun Zada, Muhammad Sadiq Hassan Shah, Rasool Zheng, Yifan School of Big Data Fuzhou University of International Studies and Trade Fujian Fuzhou350202 China Department of Computer Science Shaheed Benazir Bhutto Women University Peshawar00384 Pakistan Key Laboratory of Data Science and Intelligent Computing Fuzhou University of International Studies and Trade Fujian Fuzhou350202 China College of Computing and Engineering University of Derby DerbyDE22 1GB United Kingdom Department of Computer Science and Mathematics Lebanese American University Beirut13-5053 Lebanon
Conducting knowledge discovery on high-dimensional streaming features requires an online causal feature selection process that can significantly reduce the complexity of real-world feature spaces and enhance the learn... 详细信息
来源: 评论