咨询与建议

限定检索结果

文献类型

  • 774 篇 期刊文献
  • 756 篇 会议
  • 1 册 图书

馆藏范围

  • 1,531 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 998 篇 工学
    • 750 篇 计算机科学与技术...
    • 618 篇 软件工程
    • 231 篇 信息与通信工程
    • 139 篇 生物工程
    • 136 篇 控制科学与工程
    • 128 篇 电气工程
    • 83 篇 生物医学工程(可授...
    • 69 篇 机械工程
    • 69 篇 光学工程
    • 67 篇 电子科学与技术(可...
    • 43 篇 仪器科学与技术
    • 43 篇 化学工程与技术
    • 38 篇 交通运输工程
    • 36 篇 网络空间安全
    • 29 篇 动力工程及工程热...
    • 23 篇 安全科学与工程
  • 540 篇 理学
    • 314 篇 数学
    • 156 篇 生物学
    • 102 篇 统计学(可授理学、...
    • 88 篇 物理学
    • 54 篇 系统科学
    • 47 篇 化学
  • 309 篇 管理学
    • 179 篇 管理科学与工程(可...
    • 154 篇 图书情报与档案管...
    • 59 篇 工商管理
  • 74 篇 医学
    • 61 篇 临床医学
    • 54 篇 基础医学(可授医学...
    • 37 篇 药学(可授医学、理...
  • 48 篇 法学
    • 40 篇 社会学
  • 27 篇 经济学
    • 26 篇 应用经济学
  • 27 篇 农学
  • 13 篇 教育学
  • 3 篇 艺术学
  • 1 篇 文学

主题

  • 68 篇 semantics
  • 68 篇 feature extracti...
  • 58 篇 training
  • 46 篇 deep learning
  • 38 篇 predictive model...
  • 35 篇 computational mo...
  • 33 篇 accuracy
  • 31 篇 convolution
  • 31 篇 machine learning
  • 30 篇 data models
  • 27 篇 graph neural net...
  • 25 篇 contrastive lear...
  • 21 篇 federated learni...
  • 20 篇 task analysis
  • 20 篇 image segmentati...
  • 20 篇 neural networks
  • 20 篇 visualization
  • 19 篇 convolutional ne...
  • 18 篇 deep neural netw...
  • 17 篇 object detection

机构

  • 72 篇 beijing advanced...
  • 58 篇 shandong provinc...
  • 52 篇 key laboratory o...
  • 46 篇 shandong enginee...
  • 41 篇 national enginee...
  • 38 篇 school of comput...
  • 38 篇 school of cyber ...
  • 34 篇 chongqing key la...
  • 32 篇 key laboratory o...
  • 31 篇 guangdong key la...
  • 29 篇 school of big da...
  • 29 篇 university of ch...
  • 29 篇 peng cheng labor...
  • 27 篇 national enginee...
  • 26 篇 hubei key labora...
  • 26 篇 hubei engineerin...
  • 24 篇 services computi...
  • 24 篇 cluster and grid...
  • 24 篇 school of comput...
  • 23 篇 college of compu...

作者

  • 32 篇 jin hai
  • 27 篇 wang guoyin
  • 22 篇 huang qingming
  • 22 篇 hai jin
  • 20 篇 shen linlin
  • 20 篇 xu qianqian
  • 18 篇 hu shengshan
  • 17 篇 chen yanping
  • 15 篇 yang zhiyong
  • 15 篇 chen huajun
  • 15 篇 liu ya-feng
  • 14 篇 huang sheng
  • 14 篇 wu di
  • 14 篇 zhang leo yu
  • 13 篇 li jianxin
  • 13 篇 li minghui
  • 13 篇 yanping chen
  • 13 篇 zhou yipeng
  • 12 篇 shang mingsheng
  • 12 篇 xia shuyin

语言

  • 1,433 篇 英文
  • 81 篇 其他
  • 35 篇 中文
检索条件"机构=Hebei Key Laboratory of Big Data Computing"
1531 条 记 录,以下是11-20 订阅
排序:
LeapGNN: Accelerating Distributed GNN Training Leveraging Feature-Centric Model Migration  23
LeapGNN: Accelerating Distributed GNN Training Leveraging Fe...
收藏 引用
23rd USENIX Conference on File and Storage Technologies, FAST 2025
作者: Chen, Weijian He, Shuibing Qu, Haoyang Zhang, Xuechen The State Key Laboratory of Blockchain and Data Security Zhejiang University China Zhejiang Lab China Institute of Blockchain and Data Security China Zhejiang Key Laboratory of Big Data Intelligent Computing China Washington State University Vancouver United States
Distributed training of graph neural networks (GNNs) has become a crucial technique for processing large graphs. Prevalent GNN frameworks are model-centric, necessitating the transfer of massive graph vertex features ... 详细信息
来源: 评论
Glare-SNet: Unsupervised Glare Suppression Balance Network  27th
Glare-SNet: Unsupervised Glare Suppression Balance Network
收藏 引用
27th International Conference on Pattern Recognition, ICPR 2024
作者: Li, Pei Zuo, Chengyu Wei, Wangjuan Pan, Xiaoying Wang, Zhanhao School of Computer Science and Technology Xi’an University of Posts and Telecommunications Xi’an710121 China Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing Xi’an China Shaanxi Key Laboratory of Intelligent Media Computing and interaction Xi’an China Xi’an Key Laboratory of Big Data and Intelligent Computing Xi’an China
In light of the problems associated with glare and halo effects in low-light images, as well as the inadequacy of existing processing algorithms in handling details, a glare suppression balance network based on unsupe... 详细信息
来源: 评论
AMHF-TP:Multifunctional therapeutic peptides prediction based on multi-granularity hierarchical features
收藏 引用
Quantitative Biology 2025年 第1期13卷 127-141页
作者: Shouheng Tuo YanLing Zhu Jiangkun Lin Jiewei Jiang School of Computer Science and Technology Xi’an University of Posts and TelecommunicationsXi’anChina Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing Xi’anChina Xi’an Key Laboratory of Big Data and Intelligent Computing Xi’anChina School of Electronic Engineering Xi’an University of Posts and TelecommunicationsXi’anChina
Multifunctional therapeutic peptides(MFTP)hold immense potential in diverse therapeutic contexts,yet their prediction and identification remain challenging due to the limitations of traditional methodologies,such as e... 详细信息
来源: 评论
A numerical magnitude aware multi-channel hierarchical encoding network for math word problem solving
收藏 引用
Neural computing and Applications 2025年 第3期37卷 1651-1672页
作者: Xu, Junjie Chen, Yuzhong Xiao, Lingsheng Liao, Hongmiao Zhong, Jiayuan Dong, Chen College of Computer and Data Science Fuzhou University Fujian Province Fuzhou350108 China Engineering Research Center of Big Data Intelligence Ministry of Education Fuzhou China Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing Fujian Province Fuzhou350108 China
Math word problem (MWP) represents a critical research area within reading comprehension, where accurate comprehension of math problem text is crucial for generating math expressions. However, current approaches still... 详细信息
来源: 评论
MS-SAM: Multi-scale SAM Based on Dynamic Weighted Agent Attention  31st
MS-SAM: Multi-scale SAM Based on Dynamic Weighted Agent Att...
收藏 引用
31st International Conference on Multimedia Modeling, MMM 2025
作者: Yang, Enhui Zhang, Zhibin Engineering Research Center of Ecological Big Data Ministry of Education Key Laboratory of Wireless Networks and Mobile Computing Inner Mongolia University Hohhot010021 China
The Segment Anything Model (SAM), introduced in 2023, has made significant advancements in the field of computer vision. However, SAM faces two major challenges: limitations related to single-scale processing and high... 详细信息
来源: 评论
An Evolutionary Multitasking Algorithm for Efficient Multiobjective Recommendations
IEEE Transactions on Artificial Intelligence
收藏 引用
IEEE Transactions on Artificial Intelligence 2025年 第3期6卷 518-532页
作者: Tian, Ye Ji, Luke Hu, Yiwei Ma, Haiping Wu, Le Zhang, Xingyi Anhui University Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education School of Computer Science and Technology Hefei230601 China Anhui University Institutes of Physical Science and Information Technology Hefei230601 China Hefei University of Technology Key Laboratory of Knowledge Engineering with Big Data Hefei230029 China
Represented by evolutionary algorithms and swarm intelligence algorithms, nature-inspired metaheuristics have been successfully applied to recommender systems and amply demonstrated effectiveness, in particular, for m... 详细信息
来源: 评论
Lightweight Dual Grouped Large-Kernel Convolutions for Salient Object Detection Network  31st
Lightweight Dual Grouped Large-Kernel Convolutions for Sali...
收藏 引用
31st International Conference on Multimedia Modeling, MMM 2025
作者: Liu, Jiajie Zhang, Zhibin Engineering Research Center of Ecological Big Data Ministry of Education Beijing China Key Laboratory of Wireless Networks and Mobile Computing Inner Mongolia University Hohhot010021 China
Most existing Salient Object Detection (SOD) methods focus on achieving better performance, often resulting in models with a large number of parameters. However, there is limited research on lightweight models in this... 详细信息
来源: 评论
MMH-FE:AMulti-Precision and Multi-Sourced Heterogeneous Privacy-Preserving Neural Network Training Based on Functional Encryption
收藏 引用
Computers, Materials & Continua 2025年 第3期82卷 5387-5405页
作者: Hao Li Kuan Shao Xin Wang Mufeng Wang Zhenyong Zhang The State Key Laboratory of Public Big Data College of Computer Science and TechnologyGuizhou UniversityGuiyang550025China Key Laboratory of Computing Power Network and Information Security Ministry of EducationShandong Computer Science CenterQilu University of Technology(Shandong Academy of Sciences)Jinan250014China China Industrial Control Systems Cyber Emergency Response Team Beijing100040China
Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model ***,dishonest clouds may infer user data,resulting in user data *** schemes have achie... 详细信息
来源: 评论
Edge-Cloud Cooperation-Driven Intelligent Sustainability Evaluation Strategy Based on IoT and CPS for Energy-Intensive Manufacturing Industries
收藏 引用
IEEE Internet of Things Journal 2025年 第9期12卷 12287-12297页
作者: Ma, Shuaiyin Huang, Yuming Chen, Yanping Xiao, Qinge Xu, Jun Leng, Jiewu Xi’an University of Posts and Telecommunications Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing Xi’an Key Laboratory of Big Data and Intelligent Computing School of Computer Science and Technology Xi’an710121 China Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen518055 China Xidian University Advanced Manufacturing Technology Innovation Center Guangzhou Institute of Technology Guangzhou510555 China Guangdong University of Technology Guangdong Provincial Key Laboratory of Computer Integrated Manufacturing System State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment Guangzhou510006 China
The advancement of the Industry 5.0 in information technology has led to increased interest in integrating edge-cloud cooperation with Internet of Things (IoT) and cyber-physical system (CPS) designs. This integration... 详细信息
来源: 评论
GoPIM: GCN-Oriented Pipeline Optimization for PIM Accelerators  31
GoPIM: GCN-Oriented Pipeline Optimization for PIM Accelerato...
收藏 引用
31st IEEE International Symposium on High Performance Computer Architecture, HPCA 2025
作者: Yang, Siling He, Shuibing Wang, Wenjiong Yin, Yanlong Wu, Tong Chen, Weijian Zhang, Xuechen Sun, Xian-He Feng, Dan The State Key Laboratory of Blockchain and Data Security Zhejiang University China Zhejiang Lab China Institute of Blockchain and Data Security China Zhejiang Key Laboratory of Big Data Intelligent Computing China Washington State University Vancouver United States Illinois Institute of Technology United States Huazhong University of Science and Technology China Wuhan National Laboratory for Optoelectronics China
Graph convolutional networks (GCNs) are popular for a variety of graph learning tasks. ReRAM-based processing-in-memory (PIM) accelerators are promising to expedite GCN training owing to their in-situ computing capabi... 详细信息
来源: 评论