咨询与建议

限定检索结果

文献类型

  • 774 篇 期刊文献
  • 756 篇 会议
  • 1 册 图书

馆藏范围

  • 1,531 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 999 篇 工学
    • 749 篇 计算机科学与技术...
    • 622 篇 软件工程
    • 230 篇 信息与通信工程
    • 140 篇 生物工程
    • 134 篇 控制科学与工程
    • 128 篇 电气工程
    • 84 篇 生物医学工程(可授...
    • 72 篇 光学工程
    • 69 篇 机械工程
    • 67 篇 电子科学与技术(可...
    • 44 篇 化学工程与技术
    • 43 篇 仪器科学与技术
    • 38 篇 交通运输工程
    • 35 篇 网络空间安全
    • 29 篇 动力工程及工程热...
    • 23 篇 安全科学与工程
  • 544 篇 理学
    • 316 篇 数学
    • 156 篇 生物学
    • 102 篇 统计学(可授理学、...
    • 89 篇 物理学
    • 55 篇 系统科学
    • 48 篇 化学
  • 310 篇 管理学
    • 180 篇 管理科学与工程(可...
    • 154 篇 图书情报与档案管...
    • 60 篇 工商管理
  • 74 篇 医学
    • 62 篇 临床医学
    • 54 篇 基础医学(可授医学...
    • 37 篇 药学(可授医学、理...
  • 48 篇 法学
    • 40 篇 社会学
  • 27 篇 经济学
    • 26 篇 应用经济学
  • 27 篇 农学
  • 13 篇 教育学
  • 3 篇 艺术学
  • 1 篇 文学

主题

  • 68 篇 semantics
  • 68 篇 feature extracti...
  • 58 篇 training
  • 46 篇 deep learning
  • 38 篇 predictive model...
  • 35 篇 computational mo...
  • 34 篇 accuracy
  • 31 篇 convolution
  • 31 篇 machine learning
  • 30 篇 data models
  • 27 篇 graph neural net...
  • 25 篇 contrastive lear...
  • 21 篇 federated learni...
  • 20 篇 task analysis
  • 20 篇 image segmentati...
  • 20 篇 neural networks
  • 20 篇 visualization
  • 19 篇 convolutional ne...
  • 18 篇 deep neural netw...
  • 17 篇 object detection

机构

  • 72 篇 beijing advanced...
  • 58 篇 shandong provinc...
  • 52 篇 key laboratory o...
  • 46 篇 shandong enginee...
  • 41 篇 national enginee...
  • 38 篇 school of comput...
  • 38 篇 school of cyber ...
  • 34 篇 chongqing key la...
  • 33 篇 key laboratory o...
  • 31 篇 guangdong key la...
  • 29 篇 school of big da...
  • 29 篇 university of ch...
  • 29 篇 peng cheng labor...
  • 27 篇 national enginee...
  • 26 篇 hubei key labora...
  • 26 篇 hubei engineerin...
  • 24 篇 services computi...
  • 24 篇 cluster and grid...
  • 24 篇 school of comput...
  • 23 篇 college of compu...

作者

  • 32 篇 jin hai
  • 28 篇 wang guoyin
  • 22 篇 huang qingming
  • 22 篇 hai jin
  • 20 篇 shen linlin
  • 20 篇 xu qianqian
  • 18 篇 hu shengshan
  • 18 篇 chen yanping
  • 15 篇 yang zhiyong
  • 15 篇 chen huajun
  • 15 篇 liu ya-feng
  • 14 篇 huang sheng
  • 14 篇 wu di
  • 14 篇 zhang leo yu
  • 13 篇 li jianxin
  • 13 篇 li minghui
  • 13 篇 zhou yipeng
  • 12 篇 shang mingsheng
  • 12 篇 xia shuyin
  • 12 篇 yuan ye

语言

  • 1,431 篇 英文
  • 83 篇 其他
  • 35 篇 中文
检索条件"机构=Hebei Key Laboratory of Big Data Computing"
1531 条 记 录,以下是61-70 订阅
排序:
How Do LLMs Acquire New Knowledge? A Knowledge Circuits Perspective on Continual Pre-Training
arXiv
收藏 引用
arXiv 2025年
作者: Ou, Yixin Yao, Yunzhi Zhang, Ningyu Jin, Hui Sun, Jiacheng Deng, Shumin Li, Zhenguo Chen, Huajun Zhejiang University China Huawei Noah’s Ark Lab Canada National University of Singapore NUS-NCS Joint Lab Singapore Zhejiang Key Laboratory of Big Data Intelligent Computing China
Despite exceptional capabilities in knowledge-intensive tasks, Large Language Models (LLMs) face a critical gap in understanding how they internalize new knowledge, particularly how to structurally embed acquired know... 详细信息
来源: 评论
Any-Angle Routing Algorithm for Microfluidic Biochips Driven by Flow Path
收藏 引用
Jisuanji Yanjiu yu Fazhan/Computer Research and Development 2025年 第4期62卷 978-988页
作者: Youlin, Pan Shuai, Guo Xing, Huang Genggeng, Liu College of Computer and Data Science Fuzhou University Fuzhou350116 China Engineering Research Center of Big Data Intelligence Fuzhou University Ministry of Education Fuzhou350116 China Fujian Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou350116 China School of Computer Science Northwestern Polytechnical University Xi’an710072 China
Continuous-flow microfluidic biochips (CFMBs) have become a hot research topic in recent years due to their ability to perform biochemical assays automatically and efficiently. For the first time, PathDriver+ takes th... 详细信息
来源: 评论
Control Logic Routing for Continuous-Flow Microfluidic Biochips Based on Deep Reinforcement Learning
收藏 引用
Jisuanji Yanjiu yu Fazhan/Computer Research and Development 2025年 第4期62卷 950-962页
作者: Cai, Huayang Huang, Xing Liu, Genggeng College of Computer and Data Science Fuzhou University Fuzhou350116 China Engineering Research Center of Big Data Intelligence Fuzhou University Ministry of Education Fuzhou350116 China Fujian Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou350116 China School of Computer Science Northwestern Polytechnical University Xi’an710072 China
With the advancement of electronic design automation, continuous-flow microfluidic biochips have become one of the most promising platforms for biochemical experiments. This chip manipulates fluid samples in millilite... 详细信息
来源: 评论
Extracting High-order Connectivity of EEG-based Dynamic Functional Connectivity Networks for Diagnosis of Major Depressive Disorder  24
Extracting High-order Connectivity of EEG-based Dynamic Func...
收藏 引用
4th Asia-Pacific Artificial Intelligence and big data Forum, AIBDF 2024
作者: Zhao, Feng Fan, Wenxuan Han, Zhongwei Chen, Hongyu School of Computer Science and Technology Shandong Technology and Business University Shandong Yantai China Yantai Key Laboratory of Big Data Modeling and Intelligent Computing Shandong Yantai China Immersion Technology and Evaluation Shandong Engineering Research Center Shandong Yantai China Information Engineering College Yantai Institute of Technology Shandong Yantai China Shandong Technology and Business University Shandong Yantai China
Functional connectivity networks (FCNs), particularly those utilizing the phase lag index (PLI) method, have been instrumental in elucidating the pathological features of Major Depressive Disorder (MDD) by assessing t... 详细信息
来源: 评论
SAV-SE: Scene-aware Audio-Visual Speech Enhancement with Selective State Space Model
收藏 引用
IEEE Journal on Selected Topics in Signal Processing 2025年
作者: Qian, Xinyuan Gao, Jiaran Zhang, Yaodan Zhang, Qiquan Liu, Hexin Garcia, Leibny Paola Li, Haizhou University of Science and Technology Beijing School of Computer and Communication Engineering Beijing100083 China University of New South Wales School of Electrical Engineering and Telecommunications Sydney2052 Australia Nanyang Technological University College of Computing and Data Science Singapore Singapore Johns Hopkins University CLSP and HLT-COE United States Chinese University of HongKong Guangdong Provincial Key Laboratory of Big Data Computing Shenzhen518172 China Shenzhen Research Institute of Big data Shenzhen51872 China
Speech enhancement plays an essential role in various applications, and the integration of visual information has been demonstrated to bring substantial advantages. However, the majority of current research concentrat... 详细信息
来源: 评论
Autonomous Multi-Objective Optimization Using Large Language Model
收藏 引用
IEEE Transactions on Evolutionary Computation 2025年
作者: Huang, Yuxiao Wu, Shenghao Zhang, Wenjie Wu, Jibin Feng, Liang Tan, Kay Chen Department of Data Science and Artificial Intelligence Hong Kong Polytechnic University Hong Kong Department of Electrical and Elctronics Engineering Hong Kong Polytechnic University Hong Kong Chongqing University College of Computer Science Chongqing Key Laboratory of Big Data Intelligence and Privacy Computing Chongqing400044 China
Multi-objective optimization problems (MOPs) are ubiquitous in real-world applications, presenting a complex challenge of balancing multiple conflicting objectives. Traditional multi-objective evolutionary algorithms ... 详细信息
来源: 评论
Fetal Cerebellum Landmark Detection Based on 3D MRI: Method and Benchmark
收藏 引用
IEEE Journal of Biomedical and Health Informatics 2025年
作者: Gong, Haifan Liu, Huixian Wang, Yitao Liu, Xiaoling Wan, Xiang Shi, Qiao Li, Haofeng Guangdong Provincial Key Laboratory of Big Data Computing Shenzhen Research Institute of Big Data Shenzhen518172 China The Chinese University of HongKong School of Science and Engineering Shenzhen518172 China Shenzhen Baoan Women's and Children's Hospital Department of Radiology Shenzhen518000 China The Chinese University of HongKong School of Data Science Shenzhen518172 China
Fetal cerebellum landmark detection is crucial for assessing fetal brain development. Although deep learning has become the standard for automatic landmark detection, most previous methods have focused on using 2D ult... 详细信息
来源: 评论
Community-Aware Heterogeneous Graph Contrastive Learning  19th
Community-Aware Heterogeneous Graph Contrastive Learning
收藏 引用
19th CCF Conference on Computer Supported Cooperative Work and Social computing, ChineseCSCW 2024
作者: Li, Xinying Wu, Ling Guo, Kun College of Computer and Data Science Fuzhou University Fuzhou350108 China Engineering Research Center of Big Data Intelligence Ministry of Education Fuzhou350108 China Fujian Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou350108 China
Recently, heterogeneous graph contrastive learning, which can mine supervision signals from the data, has attracted widespread attention. However, most existing methods employ random data augmentation strategies to co... 详细信息
来源: 评论
Community Evolution Tracking Based on High-Order Neighbor Consideration and Node Change Identification  19th
Community Evolution Tracking Based on High-Order Neighbor C...
收藏 引用
19th CCF Conference on Computer Supported Cooperative Work and Social computing, ChineseCSCW 2024
作者: Zhang, Yunan Wang, Chaohui Wu, Ling Guo, Kun College of Computer and Data Science Fuzhou University Fuzhou350108 China Engineering Research Center of Big Data Intelligence Ministry of Education Fuzhou350108 China Fujian Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou350108 China
Community evolution tracking is widely used in complex network analysis, which analyzes and identifies how communities evolve over time based on dynamic community detection. However, the current incremental dynamic co... 详细信息
来源: 评论
D-FGNAE: Decentralized Federated Graph Normalized AutoEncoder  19th
D-FGNAE: Decentralized Federated Graph Normalized AutoEncode...
收藏 引用
19th CCF Conference on Computer Supported Cooperative Work and Social computing, ChineseCSCW 2024
作者: Liang, Yuting Cai, Weixin Guo, Kun College of Computer and Data Science Fuzhou University Fuzhou350108 China Engineering Research Center of Big Data Intelligence Ministry of Education Fuzhou350108 China Fujian Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou350108 China
Graphs widely exist in real-world, and Graph Neural Networks (GNNs) have exhibited exceptional efficacy in graph learning in diverse fields. With the strengthening of data privacy protection worldwide in recent years,... 详细信息
来源: 评论