咨询与建议

限定检索结果

文献类型

  • 200 篇 期刊文献
  • 68 篇 会议

馆藏范围

  • 268 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 189 篇 工学
    • 99 篇 计算机科学与技术...
    • 76 篇 软件工程
    • 31 篇 电子科学与技术(可...
    • 28 篇 电气工程
    • 27 篇 光学工程
    • 26 篇 信息与通信工程
    • 17 篇 生物工程
    • 13 篇 力学(可授工学、理...
    • 13 篇 仪器科学与技术
    • 13 篇 控制科学与工程
    • 12 篇 材料科学与工程(可...
    • 12 篇 动力工程及工程热...
    • 9 篇 冶金工程
    • 9 篇 建筑学
    • 9 篇 航空宇航科学与技...
    • 9 篇 生物医学工程(可授...
    • 8 篇 化学工程与技术
    • 7 篇 土木工程
  • 155 篇 理学
    • 73 篇 物理学
    • 67 篇 数学
    • 51 篇 地球物理学
    • 20 篇 生物学
    • 19 篇 化学
    • 18 篇 统计学(可授理学、...
    • 8 篇 系统科学
    • 6 篇 天文学
  • 29 篇 管理学
    • 17 篇 图书情报与档案管...
    • 13 篇 管理科学与工程(可...
  • 12 篇 医学
    • 7 篇 临床医学
    • 6 篇 基础医学(可授医学...
  • 4 篇 农学
  • 3 篇 经济学
  • 2 篇 法学

主题

  • 19 篇 cosmology
  • 11 篇 galaxies
  • 8 篇 microcontrollers
  • 7 篇 dark matter
  • 6 篇 deep neural netw...
  • 6 篇 dark energy
  • 5 篇 deep learning
  • 4 篇 parallel process...
  • 4 篇 signal to noise ...
  • 4 篇 supernovae
  • 4 篇 costs
  • 4 篇 machine learning
  • 3 篇 computer science
  • 3 篇 linux
  • 3 篇 magnetic fields
  • 3 篇 convolution
  • 3 篇 semantics
  • 3 篇 large scale stru...
  • 3 篇 data models
  • 3 篇 training

机构

  • 21 篇 ifpu institute f...
  • 19 篇 icsc - centro na...
  • 12 篇 infn sezione di ...
  • 12 篇 icsc - italian r...
  • 12 篇 school of data a...
  • 12 篇 inaf-osservatori...
  • 10 篇 institute for as...
  • 10 篇 inaf-osservatori...
  • 9 篇 infn-sezione di ...
  • 9 篇 jodrell bank cen...
  • 9 篇 sissa internatio...
  • 9 篇 rwth aachen univ...
  • 9 篇 institute of hig...
  • 9 篇 inaf-iasf milano...
  • 9 篇 dipartimento di ...
  • 9 篇 inaf-osservatori...
  • 9 篇 astronomy unit d...
  • 9 篇 dipartimento di ...
  • 9 篇 infn-sezione di ...
  • 9 篇 icsc - italian r...

作者

  • 14 篇 trotta roberto
  • 11 篇 dolag klaus
  • 11 篇 borgani stefano
  • 11 篇 valentini milena
  • 10 篇 carbone c.
  • 10 篇 viel matteo
  • 10 篇 xu yong
  • 10 篇 markovic k.
  • 10 篇 camera s.
  • 9 篇 keihänen e.
  • 9 篇 da silva a.
  • 9 篇 renzi a.
  • 9 篇 stanco l.
  • 9 篇 meneghetti m.
  • 9 篇 brescia m.
  • 9 篇 kurki-suonio h.
  • 9 篇 moscardini l.
  • 9 篇 mansutti o.
  • 9 篇 farina m.
  • 9 篇 gillis b.

语言

  • 222 篇 英文
  • 41 篇 其他
  • 5 篇 中文
检索条件"机构=High Performance Computing and Big Data Laboratory"
268 条 记 录,以下是91-100 订阅
排序:
Sequence-to-Sequence Knowledge Graph Completion Based On Gated Attention Unit
Sequence-to-Sequence Knowledge Graph Completion Based On Gat...
收藏 引用
International Conference on Parallel and Distributed Systems (ICPADS)
作者: Fengge Yi Xiumei Wei Xiaojing Liu Xuesong Jiang Key Laboratory of Computing Power Network and Information Security Ministry of Education Shandong Computer Science Center Qilu University of Technology (Shandong Academy of Sciences) Jinan China Shandong Engineering Research Center of Big Data Applied Technology Faculty of Computer Science and Technology Qilu University of Technology (Shandong Academy of Sciences) Jinan China Shandong Provincial Key Laboratory of Computer Networks Shandong Fundamental Research Center for Computer Science Jinan China State Key Laboratory of High-end Server & Storage Technology Jinan China
We present GauKGT5, a sequence-to-sequence model proposed for knowledge graph completion (KGC). Our research extends the KGT5 model, a recent sequence-to-sequence link prediction (LP) model. GauKGT5 takes advantage of...
来源: 评论
Robust Model Aggregation for Heterogeneous Federated Learning: Analysis and Optimizations
arXiv
收藏 引用
arXiv 2024年
作者: Shao, Yumeng Li, Jun Shi, Long Wei, Kang Ding, Ming Li, Qianmu Li, Zengxiang Chen, Wen Jin, Shi The School of Electronic and Optical Engineering Nanjing University of Science and Technology Nanjing210094 China Data61 CSIRO Sydney Australia The Digital Economy Research Institute Nanjing University of Science and Technology Jiangsu Nanjing210094 China The Institute of High Performance Computing A*STAR Singapore The Digital Research Institute ENN Group China The Department of Electronic Engineering Shanghai Jiao Tong University Shanghai200240 China The National Mobile Communications Research Laboratory Southeast University Nanjing210096 China
Conventional synchronous federated learning (SFL) frameworks suffer from performance degradation in heterogeneous systems due to imbalanced local data size and diverse computing power on the client side. To address th... 详细信息
来源: 评论
1d Selective Confinement and Diffusion of Metal Atoms on Graphene
SSRN
收藏 引用
SSRN 2023年
作者: Stavrić, Srdjan Chesnyak, Valeria del Puppo, Simone Panighel, Mirco Comelli, Giovanni Africh, Cristina Šljivančanin, Željko Peressi, Maria Consiglio Nazionale delle Ricerche CNR-SPIN c/o Università degli Studi "G. D’Annunzio" Chieti66100 Italy Vinča Institute of Nuclear Sciences National Institute of the Republic of Serbia University of Belgrade P. O. Box 522 BelgradeRS-11001 Serbia Physics Department University of Trieste via A. Valerio 2 Trieste34127 Italy CNR-IOM Laboratorio TASC S.S. 14 Km 163.5 Basovizza Trieste34149 Italy ICSC - Italian Research Center on High Performance Computing Big Data and Quantum Computing Italy
Graphene (G) grown on Ni(100) forms a striped moiré pattern of valleys, where G approaches the nickel substrate and interacts with it rather strongly, and ridges, where G stays far away from the substrate and act... 详细信息
来源: 评论
Supermassive black hole spin evolution in cosmological simulations with OpenGadget3
arXiv
收藏 引用
arXiv 2023年
作者: Sala, Luca Valentini, Milena Biffi, Veronica Dolag, Klaus Universitäts-Sternwarte Fakultät für Physik Ludwig-Maximilians-Universität München Scheinerstr. 1 MünchenD-81679 Germany Astronomy Unit Department of Physics University of Trieste via Tiepolo 11 TriesteI-34131 Italy INAF – Osservatorio Astronomico di Trieste via Tiepolo 11 TriesteI-34131 Italy ICSC - Italian Research Center on High Performance Computing Big Data and Quantum Computing Italy Max-Planck-Institut für Astrophysik Karl-Schwarzschild-Str. 1 GarchingD-85741 Germany
Context. Mass and spin of massive black holes (BHs) at the centre of galaxies evolve due to gas accretion and mergers with other BHs. Besides affecting e.g. the evolution of relativistic jets, the BH spin determines t... 详细信息
来源: 评论
From few to many maps: A fast map-level emulator for extreme augmentation of CMB systematics datasets
arXiv
收藏 引用
arXiv 2025年
作者: Campeti, P. Delouis, J.-M. Pagano, L. Allys, E. Lattanzi, M. Gerbino, M. INFN Sezione di Ferrara Via Saragat 1 Ferrara44122 Italy ICSC Centro Nazionale "High Performance Computing Big Data and Quantum Computing" Univ. Brest CNRS Ifremer IRD Brest29200 France Dipartimento di Fisica e Scienze della Terra Università degli Studi di Ferrara via Saragat 1 FerraraI-44122 Italy Institut d’Astrophysique Spatiale CNRS Univ. Paris-Sud Université Paris-Saclay Bât. 121 Orsay91405 cedex France Laboratoire de Physique de l’Ecole Normale Supérieure ENS Univ. PSL CNRS Sorbonne Univ. Univ. Paris Cité Paris75005 France
We introduce a novel, fast, and efficient generative model built upon scattering covariances, the most recent iteration of the scattering transforms statistics. This model is designed to augment by several orders of m... 详细信息
来源: 评论
Classifying spectra of emission-line regions with neural networks An application to integral field spectroscopic data of M33
arXiv
收藏 引用
arXiv 2025年
作者: Bracci, Caterina Belfiore, Francesco Ginolfi, Michele Feltre, Anna Mannucci, Filippo Marconi, Alessandro Cresci, Giovanni Bertola, Elena Bombini, Alessandro Ceci, Matteo Marconcini, Cosimo Moreschini, Bianca Scialpi, Martina Tozzi, Giulia Ulivi, Lorenzo Venturi, Giacomo Dipartimento di Fisica e Astronomia Università di Firenze Via G. Sansone 1 Sesto F.no FirenzeI-50019 Italy INAF - Osservatorio Astrofisico di Arcetri Largo E. Fermi 5 FlorenceI-50125 Italy Via Bruno Rossi 1 FI Sesto Fiorentino50019 Italy ICSC - Centro Nazionale di Ricerca in High Performance Computing Big Data & Quantum Computing Via Magnanelli 2 BO Casalecchio di Reno40033 Italy University of Trento Via Sommarive 14 TrentoI-38123 Italy Gießenbachstraße 1 Garching85748 Germany Scuola Normale Superiore Piazza dei Cavalieri 7 PisaI-56126 Italy
Emission-line regions are key to understanding the properties and evolution of galaxies, as they trace the exchange of matter and energy between stars and the interstellar medium (ISM). In nearby galaxies, individual ... 详细信息
来源: 评论
Systematic bias in dark siren statistical methods and its impact on Hubble constant measurement
arXiv
收藏 引用
arXiv 2025年
作者: Alfradique, Viviane Bom, Clécio R. Castro, Tiago Centro Brasileiro de Pesquisas Físicas Rua Dr. Xavier Sigaud 150 RJ Rio de Janeiro22290-180 Brazil Centro Federal de Educação Tecnológica Celso Suckow da Fonseca Rodovia Márcio Covas lote J2 quadra J Itaguaí Brazil INAF Osservatorio Astronomico di Trieste via Tiepolo 11 TriesteI-34131 Italy INFN Sezione di Trieste TriesteI-34100 Italy IFPU Institute for Fundamental Physics of the Universe via Beirut 2 Trieste34151 Italy ICSC - Centro Nazionale di Ricerca in High Performance Computing Big Data e Quantum Computing Via Magnanelli 2 Bologna Italy
The advent of the multimessenger cosmology marked by the detection of GW170817, gravitational waves (GWs) from compact objects at cosmological distances demonstrated Standard Sirens as a relevant cosmological probe. I... 详细信息
来源: 评论
Improved Weak Lensing Photometric Redshift Calibration via StratLearn and Hierarchical Modeling
arXiv
收藏 引用
arXiv 2024年
作者: Autenrieth, Maximilian Wright, Angus H. Trotta, Roberto van Dyk, David A. Stenning, David C. Joachimi, Benjamin Department of Mathematics Imperial College London 180 Queen’s Gate LondonSW7 2AZ United Kingdom German Centre for Cosmological Lensing Bochum44780 Germany SISSA International School for Advanced Studies Via Bonomea 265 Trieste34136 Italy Department of Physics Imperial College London Blackett Laboratory Prince Consort Rd LondonSW72AZ United Kingdom Italian Research Center on High Performance Computing Big Data and Quantum Computing Italy INFN – National Institute for Nuclear Physics Via Valerio 2 Trieste34127 Italy Department of Statistics and Actuarial Science Simon Fraser University Canada Department of Physics and Astronomy University College London Gower Street LondonWC1E 6BT United Kingdom
Discrepancies between cosmological parameter estimates from cosmic shear surveys and from recent Planck cosmic microwave background measurements challenge the ability of the highly successful ΛCDM model to describe t... 详细信息
来源: 评论
Bayesian evidence estimation from posterior samples with normalizing flows
arXiv
收藏 引用
arXiv 2024年
作者: Srinivasan, Rahul Crisostomi, Marco Trotta, Roberto Barausse, Enrico Breschi, Matteo SISSA Via Bonomea 265 Trieste34136 Italy INFN Sezione di Trieste Trieste34149 Italy IFPU - Institute for Fundamental Physics of the Universe Via Beirut 2 Trieste34014 Italy TAPIR Division of Physics Mathematics and Astronomy California Institute of Technology PasadenaCA91125 United States Dipartimento di Fisica Università di Pisa Largo Bruno Pontecorvo 3 Pisa56127 Italy Department of Physics Imperial College London Blackett Lab Prince Consort Rd LondonSW7 2AZ United Kingdom Italian Research Center on High Performance Computing Big Data and Quantum Computing 13 Via Magnanelli 2 40033 Italy
We propose a novel method (floZ), based on normalizing flows, to estimate the Bayesian evidence (and its numerical uncertainty) from a pre-existing set of samples drawn from the unnormalized posterior distribution. We... 详细信息
来源: 评论
SIDE-real: Supernova Ia Dust Extinction with truncated marginal neural ratio estimation applied to real data
arXiv
收藏 引用
arXiv 2024年
作者: Karchev, Konstantin Grayling, Matthew Boyd, Benjamin M. Trotta, Roberto Mandel, Kaisey S. Weniger, Christoph Via Bonomea 265 TriesteI-34136 Italy Institute of Astronomy Kavli Institute for Cosmology Madingley Road CambridgeCB3 0HA United Kingdom Astrophysics Group Physics Department Blackett Lab Imperial College London Prince Consort Road LondonSW7 2AZ United Kingdom INFN - National Institute for Nuclear Physics Via Valerio 2 TriesteI-34127 Italy Italian Research Center on High-Performance Computing Big Data and Quantum Computing Via Magnanelli 2 BO Casalecchio di RenoI-40033 Italy Statistical Laboratory DPMMS University of Cambridge Wilberforce Road CambridgeCB3 0WB United Kingdom University of Amsterdam Science Park 904 AmsterdamNL-1098 XH Netherlands
We present the first fully simulation-based hierarchical analysis of the light curves of a population of low-redshift type Ia supernovæ (SNæ Ia). Our hardware-accelerated forward model, released in the Pytho... 详细信息
来源: 评论