咨询与建议

限定检索结果

文献类型

  • 200 篇 期刊文献
  • 71 篇 会议

馆藏范围

  • 271 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 192 篇 工学
    • 103 篇 计算机科学与技术...
    • 77 篇 软件工程
    • 31 篇 电子科学与技术(可...
    • 28 篇 光学工程
    • 28 篇 电气工程
    • 26 篇 信息与通信工程
    • 18 篇 生物工程
    • 16 篇 控制科学与工程
    • 13 篇 仪器科学与技术
    • 12 篇 力学(可授工学、理...
    • 12 篇 材料科学与工程(可...
    • 12 篇 动力工程及工程热...
    • 9 篇 冶金工程
    • 9 篇 建筑学
    • 9 篇 生物医学工程(可授...
    • 8 篇 化学工程与技术
    • 8 篇 航空宇航科学与技...
    • 7 篇 土木工程
  • 155 篇 理学
    • 73 篇 物理学
    • 67 篇 数学
    • 51 篇 地球物理学
    • 21 篇 生物学
    • 19 篇 化学
    • 18 篇 统计学(可授理学、...
    • 8 篇 系统科学
    • 6 篇 天文学
  • 30 篇 管理学
    • 18 篇 图书情报与档案管...
    • 14 篇 管理科学与工程(可...
  • 12 篇 医学
    • 7 篇 临床医学
    • 6 篇 基础医学(可授医学...
  • 4 篇 农学
  • 3 篇 经济学
  • 2 篇 法学

主题

  • 18 篇 cosmology
  • 11 篇 galaxies
  • 8 篇 microcontrollers
  • 7 篇 dark matter
  • 6 篇 deep neural netw...
  • 6 篇 dark energy
  • 5 篇 deep learning
  • 4 篇 parallel process...
  • 4 篇 signal to noise ...
  • 4 篇 costs
  • 4 篇 semantics
  • 4 篇 machine learning
  • 3 篇 computer science
  • 3 篇 linux
  • 3 篇 magnetic fields
  • 3 篇 supernovae
  • 3 篇 convolution
  • 3 篇 large scale stru...
  • 3 篇 data models
  • 3 篇 training

机构

  • 20 篇 ifpu institute f...
  • 19 篇 icsc - centro na...
  • 12 篇 icsc - italian r...
  • 12 篇 school of data a...
  • 11 篇 infn sezione di ...
  • 11 篇 inaf-osservatori...
  • 9 篇 institute for as...
  • 9 篇 inaf-osservatori...
  • 9 篇 institute of hig...
  • 9 篇 astronomy unit d...
  • 9 篇 icsc - italian r...
  • 8 篇 infn-sezione di ...
  • 8 篇 jodrell bank cen...
  • 8 篇 sissa internatio...
  • 8 篇 anhui high relia...
  • 8 篇 rwth aachen univ...
  • 8 篇 school of integr...
  • 8 篇 inaf-iasf milano...
  • 8 篇 shandong dongyi ...
  • 8 篇 dipartimento di ...

作者

  • 14 篇 trotta roberto
  • 11 篇 dolag klaus
  • 11 篇 valentini milena
  • 10 篇 viel matteo
  • 10 篇 xu yong
  • 10 篇 borgani stefano
  • 8 篇 keihänen e.
  • 8 篇 xiao yongguang
  • 8 篇 carbone c.
  • 8 篇 zhang xiaoqiang
  • 8 篇 meneghetti m.
  • 8 篇 moscardini l.
  • 8 篇 jiang yunqing
  • 8 篇 zhao zhenyang
  • 8 篇 markovic k.
  • 8 篇 camera s.
  • 8 篇 liu fengguang
  • 8 篇 li hongqing
  • 8 篇 zhao weisheng
  • 8 篇 zhang fan

语言

  • 215 篇 英文
  • 51 篇 其他
  • 5 篇 中文
检索条件"机构=High Performance Computing and Big Data Laboratory"
271 条 记 录,以下是161-170 订阅
排序:
The Library for Hadoop Deflate Compression Based on FPGA Accelerator with Load Balance  20
The Library for Hadoop Deflate Compression Based on FPGA Acc...
收藏 引用
20th International Conference on Parallel and Distributed computing, Applications and Technologies, PDCAT 2019
作者: Du, Haixin Zhang, Jiankui Sha, Shihao Ye, Cai Luo, Qiuming College of Computer Science and Software Engineering Shenzhen University NHPCC/Guangdong Key Laboratory of Popular HPC Guangdong Province Engineering Center of China-made High Performance Data Computing System Shenzhen China
Hadoop application will produce lots of intermediate results in the map/reduce process that requires disk I/O and network transmission. By compressing the large-scale data of intermediate result, it will greatly impro... 详细信息
来源: 评论
Implementation of the parallel mean shift-based imagesegmentation algorithm on a GPU cluster
收藏 引用
International Journal of Digital Earth 2019年 第3期12卷 328-353页
作者: Fang Huang Yinjie Chen Li Li Ji Zhou Jian Tao Xicheng Tan Guangsong Fana School of Resources&Environment University of Electronic Science and Technology of ChinaChengduPeople’s Republic of China Institute of Remote Sensing Big Data Big Data Research CenterUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China School of Construction&Management Engineering Xihua UniversityChengduPeople’s Republic of China Texas A&M Engineering Experiment Station and High Performance Research Computing Texas A&M UniversityCollege StationTXUSA International School of Software Wuhan UniversityWuhanPeople’s Republic of China
The mean shift image segmentation algorithm is very computationintensive. To address the need to deal with a large number of remotesensing (RS) image segmentations in real-world applications, this studyhas investigat... 详细信息
来源: 评论
Density Fluctuations in the Intracluster Medium: An Attempt to Constrain Viscosity with Cosmological Simulations
arXiv
收藏 引用
arXiv 2024年
作者: Marin-Gilabert, Tirso Steinwandel, Ulrich P. Valentini, Milena Vallés-Pérez, David Dolag, Klaus Universitäts-Sternwarte Fakultät für Physik Ludwig-Maximilians-Universität München Scheinerstr.1 München81679 Germany Center for Computational Astrophysics Flatiron Institute 162 5th Avenue New YorkNY10010 United States Astronomy Unit Department of Physics University of Trieste via Tiepolo 11 TriesteI-34131 Italy INAF - Osservatorio Astronomico di Trieste via Tiepolo 11 TriesteI-34131 Italy INFN Instituto Nazionale di Fisica Nucleare Via Valerio 2 TriesteI-34127 Italy ICSC - Italian Research Center on High Performance Computing Big Data and Quantum Computing via Magnanelli 2 Casalecchio di Reno40033 Italy Departament d'Astronomia i Astrofísica Universitat de València C/Doctor Moliner 50 València BurjassotE-46100 Spain Max-Planck-Institut für Astrophysik Karl-Schwarzschild-Straße 1 Garching85741 Germany
The impact of viscosity in the Intracluster Medium (ICM) is still an open question in astrophysics. To address this problem, we have run a set of cosmological simulations of three galaxy clusters with a mass larger th... 详细信息
来源: 评论
An implementation of nDGP gravity in Pinocchio
arXiv
收藏 引用
arXiv 2023年
作者: Song, Yanling Hu, Bin Ruan, Cheng-Zong Moretti, Chiara Monaco, Pierluigi Center for Gravitation and Cosmology College of Physical Science and Technology Yangzhou University Yangzhou225009 China Institute for Frontier in Astronomy and Astrophysics Beijing Normal University Beijing102206 China Department of Astronomy Beijing Normal University Beijing100875 China Institute of Theoretical Astrophysics University of Oslo Oslo0315 Norway SISSA - International School for Advanced Studies Via Bonomea 265 Trieste34136 Italy Centro Nazionale "High Performance Computer Big Data and Quantum Computing" Italy INAF Osservatorio Astronomico di Trieste Via Tiepolo 11 TriesteI-34143 Italy IFPU Institute for Fundamental Physics of the Universe Via Beirut 2 Trieste34014 Italy Dipartimento di Fisica Universitá di Trieste Sezione di Astronomia via Tiepolo 11 TriesteI-34143 Italy INFN Sezione di Trieste Italy
In this paper we investigate dark matter structure formation in the normal branch of the Dvali-Gabadadze-Porrati (nDGP) model using the PINOCCHIO algorithm. We first present 2nd order Lagrangian perturbation theory fo... 详细信息
来源: 评论
DSRGAN: Explicitly learning disentangled representation of underlying structure and rendering for image generation without tuple supervision
arXiv
收藏 引用
arXiv 2019年
作者: Hao, Guang-Yuan Yu, Hong-Xing Zheng, Wei-Shi School of Data and Computer Science Sun Yat-sen University Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education Collaborative Innovation Center of High Performance Computing Nudt Guangdong Key Laboratory of Big Data Analysis and Processing Guangzhou
We focus on explicitly learning disentangled representation for natural image generation, where the underlying spatial structure and the rendering on the structure can be independently controlled respectively, yet usi... 详细信息
来源: 评论
IndexIt: Enhancing data locating services for parallel file systems  21
IndexIt: Enhancing data locating services for parallel file ...
收藏 引用
21st IEEE International Conference on high performance computing and Communications, 17th IEEE International Conference on Smart City and 5th IEEE International Conference on data Science and Systems, HPCC/SmartCity/DSS 2019
作者: Cheng, Peng Wang, Yong Lu, Yutong Du, Yunfei Chen, Zhiguang College of Computer National University of Defense Technology Changsha China State Key Laboratory of High Performance Computing Changsha China National Supercomputer Center in Guangzhou School of Data and Computer Science Sun Yat-Sen University Guangzhou China
While the ability to access a small fraction of data records from a large volume of scientific datasets is vital to accelerate scientific discovery, existing parallel file systems face serious challenges in managing s... 详细信息
来源: 评论
Gradient Amplification: An efficient way to train deep neural networks
arXiv
收藏 引用
arXiv 2020年
作者: Basodi, Sunitha Ji, Chunyan Zhang, Haiping Pan, Yi Department of Computer Science Georgia State University AtlantaGA30302 United States Center for High Performance Computing Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences ShenzhenGuangdong518 055 China
Improving performance of deep learning models and reducing their training times are ongoing challenges in deep neural networks. There are several approaches proposed to address these challenges one of which is to incr... 详细信息
来源: 评论
Correction to “Privacy-Preserving Blockchain-Based Federated Learning for IoT Devices” [Feb 20 1817-1829]
收藏 引用
IEEE Internet of Things Journal 2022年 第1期10卷 973-973页
作者: Yang Zhao Jun Zhao Linshan Jiang Rui Tan Dusit Niyato Zengxiang Li Lingjuan Lyu Yingbo Liu School of Computer Science and Engineering Nanyang Technological University Jurong West Singapore Institute of High Performance Computing A*STAR Fusionopolis Singapore Department of Computer Science National University of Singapore Queenstown Singapore Big Data Research Institute of Yunnan Economy and Society Yunnan University of Finance and Economics Kunming China
In [1] , on page 1824, Fig. 3 should be as follows:
来源: 评论
An auto code generator for stencil on SW26010  21
An auto code generator for stencil on SW26010
收藏 引用
21st IEEE International Conference on high performance computing and Communications, 17th IEEE International Conference on Smart City and 5th IEEE International Conference on data Science and Systems, HPCC/SmartCity/DSS 2019
作者: Zhu, Xiaomin Zeng, Yunhui Wei, Yanjie Feng, Shengzhong Liu, Weiguo Balaji, Pavan Joint Engineering Research Center Health Big Data Intelligent Analysis Technology Center for High Performance Computing Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China Shandong Computer Science Center National SuperComputer Center in Jinan Jinan China Sclool of Software Shandong University Jinan China Argonne National Laboratory United States
Stencil is a basic building block widely used in many HPC areas and applications. It generally dominates the time cost and is critical to the overall performance. Given that heterogeneous many-core is frequently adopt... 详细信息
来源: 评论
Cross-lingual machine reading comprehension with language branch knowledge distillation
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Junhao Shou, Linjun Pei, Jian Gong, Ming Yang, Min Jiang, Daxin Shenzhen Key Laboratory for High Performance Data Mining Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China Microsoft STCA NLP Group Beijing China School of Computing Science Simon Fraser University Canada
Cross-lingual Machine Reading Comprehension (CLMRC) remains a challenging problem due to the lack of large-scale annotated datasets in low-source languages, such as Arabic, Hindi, and Vietnamese. Many previous approac... 详细信息
来源: 评论