咨询与建议

限定检索结果

文献类型

  • 1,664 篇 期刊文献
  • 963 篇 会议
  • 28 册 图书

馆藏范围

  • 2,655 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,614 篇 工学
    • 1,026 篇 计算机科学与技术...
    • 805 篇 软件工程
    • 349 篇 信息与通信工程
    • 258 篇 电气工程
    • 215 篇 电子科学与技术(可...
    • 170 篇 光学工程
    • 162 篇 生物工程
    • 154 篇 控制科学与工程
    • 119 篇 生物医学工程(可授...
    • 87 篇 机械工程
    • 86 篇 仪器科学与技术
    • 74 篇 动力工程及工程热...
    • 70 篇 核科学与技术
    • 63 篇 化学工程与技术
    • 52 篇 航空宇航科学与技...
    • 51 篇 材料科学与工程(可...
    • 51 篇 交通运输工程
  • 1,328 篇 理学
    • 751 篇 物理学
    • 436 篇 数学
    • 185 篇 生物学
    • 130 篇 统计学(可授理学、...
    • 89 篇 化学
    • 87 篇 地球物理学
    • 81 篇 系统科学
  • 390 篇 管理学
    • 255 篇 管理科学与工程(可...
    • 143 篇 工商管理
    • 138 篇 图书情报与档案管...
  • 135 篇 医学
    • 119 篇 临床医学
    • 99 篇 基础医学(可授医学...
    • 59 篇 药学(可授医学、理...
  • 44 篇 法学
  • 35 篇 经济学
  • 25 篇 教育学
  • 24 篇 农学
  • 9 篇 军事学
  • 7 篇 文学
  • 6 篇 艺术学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 55 篇 machine learning
  • 47 篇 deep learning
  • 47 篇 proton-proton in...
  • 45 篇 computer science
  • 45 篇 computational mo...
  • 44 篇 higgs bosons
  • 40 篇 hadron colliders
  • 37 篇 grid computing
  • 35 篇 large hadron col...
  • 35 篇 standard model (...
  • 32 篇 computer archite...
  • 31 篇 distributed comp...
  • 31 篇 training
  • 30 篇 laboratories
  • 30 篇 feature extracti...
  • 29 篇 collisions (nucl...
  • 29 篇 application soft...
  • 29 篇 nuclear counters
  • 28 篇 cloud computing
  • 27 篇 bandwidth

机构

  • 288 篇 department for p...
  • 287 篇 department of ph...
  • 286 篇 faculty of scien...
  • 281 篇 departamento de ...
  • 277 篇 department of ph...
  • 270 篇 kirchhoff-instit...
  • 268 篇 institute of phy...
  • 266 篇 department of ph...
  • 264 篇 department of ph...
  • 261 篇 institute of phy...
  • 260 篇 faculté des scie...
  • 247 篇 fakultät für phy...
  • 243 篇 instituto de fís...
  • 240 篇 institut für ast...
  • 235 篇 yerevan physics ...
  • 233 篇 physics departme...
  • 221 篇 department of ph...
  • 221 篇 department of ph...
  • 217 篇 physics division...
  • 214 篇 department of ph...

作者

  • 269 篇 c. alexa
  • 269 篇 j. m. izen
  • 269 篇 g. bella
  • 269 篇 j. strandberg
  • 269 篇 d. calvet
  • 269 篇 c. amelung
  • 269 篇 g. spigo
  • 268 篇 f. siegert
  • 268 篇 a. c. könig
  • 264 篇 m. klein
  • 263 篇 h. a. gordon
  • 262 篇 r. ströhmer
  • 259 篇 m. rijssenbeek
  • 258 篇 s. jin
  • 258 篇 g. gaudio
  • 258 篇 s. mohapatra
  • 257 篇 h. sakamoto
  • 257 篇 y. nagasaka
  • 250 篇 s. guindon
  • 247 篇 a. kaczmarska

语言

  • 2,491 篇 英文
  • 128 篇 其他
  • 34 篇 中文
  • 2 篇 德文
检索条件"机构=High-Performance Computing Laboratory Department of Computer Science and Information Engineering"
2655 条 记 录,以下是51-60 订阅
排序:
Virtual Network Embedding: Literature Assessment, Recent Advancements, Opportunities, and Challenges
收藏 引用
IEEE Communications Surveys and Tutorials 2025年
作者: Satpathy, Anurag Sahoo, Manmath Narayan Swain, Chittaranjan Bellavista, Paolo Guizani, Mohsen Muhammad, Khan Bakshi, Sambit Missouri University of Science and Technology Department of Computer Science RollaMO United States National Institute of Technology Visual Surveillance Laboratory Department of Computer Science and Engineering Odisha Rourkela769008 India Atal Bihari Vajpayee Indian Institute of Information Technology and Management Department of Computer Science and Engineering Gwalior India Department of Computer Science and Engineering Italy Machine Learning Department Abu Dhabi United Arab Emirates Department of Applied Artificial Intelligence School of Convergence College of Computing and Informatics Seoul03063 Korea Republic of
Network virtualization (NV) allows service providers (SPs) to instantiate logically isolated entities called virtual networks (VNs) on top of a substrate network (SN). Though VNs bring about multiple benefits, particu... 详细信息
来源: 评论
A comparative study of the performance of ten metaheuristic algorithms for parameter estimation of solar photovoltaic models
收藏 引用
PeerJ computer science 2025年 11卷 e2646-e2646页
作者: Zga, Adel Zitouni, Farouq Harous, Saad Sallam, Karam Almazyad, Abdulaziz S. Xiong, Guojiang Mohamed, Ali Wagdy Department of Computer Science and Information Technology Laboratory of Artificial Intelligence and Information Technology Kasdi Merbah University Ouargla Algeria Department of Computer Science College of Computing and Informatics University of Sharjah Sharjah United Arab Emirates Department of Computer Engineering College of Computer and Information Sciences King Saud University Riyadh Saudi Arabia Guizhou Key Laboratory of Intelligent Technology in Power System College of Electrical Engineering Guizhou University Guiyang China Operations Research Department Faculty of Graduate Studies for Statistical Research Cairo University Giza Egypt Applied Science Research Center Applied Science Private University Amman Jordan
This study conducts a comparative analysis of the performance of ten novel and wellperforming metaheuristic algorithms for parameter estimation of solar photovoltaic models. This optimization problem involves accurate... 详细信息
来源: 评论
FedPHE: A Secure and Efficient Federated Learning via Packed Homomorphic Encryption
收藏 引用
IEEE Transactions on Dependable and Secure computing 2025年
作者: Li, Yuqing Yan, Nan Chen, Jing Wang, Xiong Hong, Jianan He, Kun Wang, Wei Li, Bo Wuhan University Key Laboratory of Aerospace Information Security and Trusted Computing Ministry of Education School of Cyber Science and Engineering Wuhan430072 China Wuhan University RiZhao Information Technology Institute Rizhao276800 China Huazhong University of Science and Technology National Engineering Research Center for Big Data Technology and System Services Computing Technology and System Lab/Cluster and Grid Computing Lab School of Computer Science and Technology Wuhan430074 China Shanghai Jiao Tong University School of Cyber Science and Engineering Shanghai200240 China Hong Kong University of Science and Technology Department of Computer Science and Engineering Hong Kong
Cross-silo federated learning (FL) enables multiple institutions (clients) to collaboratively build a global model without sharing private data. To prevent privacy leakage during aggregation, homomorphic encryption (H... 详细信息
来源: 评论
Continual Reinforcement Learning for Digital Twin Synchronization Optimization
收藏 引用
IEEE Transactions on Mobile computing 2025年
作者: Tong, Haonan Chen, Mingzhe Zhao, Jun Hu, Ye Yang, Zhaohui Liu, Yuchen Yin, Changchuan Beijing University of Posts and Telecommunications Beijing Key Laboratory of Network System Architecture and Convergence Beijing Advanced Information Network Laboratory Beijing China College of Computing and Data Science Singapore University of Miami Department of Electrical and Computer Engineering Frost Institute for Data Science and Computing Coral Gables33146 United States University of Miami Department of Industrial and Systems Engineering Coral Gables33146 United States Zhejiang University College of Information Science and Electronic Engineering Hangzhou310027 China North Carolina State University Department of Computer Science RaleighNC27695 United States Beijing Key Laboratory of Network System Architecture and Convergence China Beijing University of Posts and Telecommunications Beijing Advanced Information Network Laboratory Beijing100876 China
This article investigates the adaptive resource allocation scheme for digital twin (DT) synchronization optimization over dynamic wireless networks. In our considered model, a base station (BS) continuously colle... 详细信息
来源: 评论
MRLATO: An Adaptive Task Offloading Mechanism Based on Meta Reinforcement Learning in Edge computing Environment
收藏 引用
IEEE Transactions on Vehicular Technology 2025年
作者: Zhang, Peiying Liu, Jiamin Guizani, Maher Wang, Jian Kumar, Neeraj Tan, Lizhuang Qingdao Institute of Software College of Computer Science and Technology Qingdao266580 China Shandong Key Laboratory of Intelligent Oil & Gas Industrial Software Qingdao266580 China Ministry of Education Qilu University of Technology Shandong Academy of Sciences Key Laboratory of Computing Power Network and Information Security Jinan250014 China University of Texas Arlington Computer Science and Engineering Department TX United States College of Science Qingdao266580 China Thapar University Department of Computer Science and Engineering Patiala147004 India Jinan250014 China Shandong Fundamental Research Center for Computer Science Shandong Provincial Key Laboratory of Computing Power Internet and Service Computing Jinan250014 China
Traditional cloud computing models struggle to meet the requirements of latency-sensitive applications when processing large amounts of data. As a solution, Multi-access Edge computing (MEC) extends computing resource... 详细信息
来源: 评论
Irregular Tensor Low-Rank Representation for Hyperspectral Image Representation
收藏 引用
IEEE transactions on image processing : a publication of the IEEE Signal Processing Society 2025年 PP卷 PP页
作者: Bo Han Yuheng Jia Hui Liu Junhui Hou School of Computer Science and Engineering Southeast University Nanjing China School of Computer Science and Engineering and the Key Laboratory of New Generation Artificial Intelligence Technology and Its Interdisciplinary Applications Ministry of Education Southeast University Nanjing China School of Computing Information Sciences Saint Francis University Tseung Kwan O Hong Kong Department of Computer Science City University of Hong Kong Kowloon Tong Hong Kong
Spectral variations pose a common challenge in analyzing hyperspectral images (HSI). To address this, low-rank tensor representation has emerged as a robust strategy, leveraging inherent correlations within HSI data. ... 详细信息
来源: 评论
Questionable Fairness in Federated Learning
Questionable Fairness in Federated Learning
收藏 引用
Conference on Data science and Machine Learning Applications (CDMA)
作者: Raed Alharbi Truc Nguyen Nooshin Yousefzadeh Ahmed Aljohani College of Computing and Informatics Saudi Electronic University Riyadh Saudi Arabia Computatioual Science Center National Renewable Energy Laboratory Golden CO USA Computer and Information Science and Engineering Department University of Florida Gainesville FL USA Computer Science and Engineering University of North Texas Denton USA
Federated learning (FL) has emerged as a powerful framework for training deep learning models across numerous distributed clients, where a central server distributes and aggregates model updates without accessing clie... 详细信息
来源: 评论
SEDNet: Synergistic Learning Network with Embedded Encoder and Dense Atrous Convolution for Vehicle Re-identification
收藏 引用
Alexandria engineering Journal 2025年 128卷 297-305页
作者: Mingfu Xiong Tanghao Gui Zhihong Sun Saeed Anwar Aziz Alotaibi Khan Muhammad School of Computer Science and Artificial Intelligence Wuhan Textile University Wuhan 430200 China Department of Information Security Naval University of Engineering Wuhan 430030 China The University of Western Australia (UWA) Crawley 6009 Australia Department of Computer Science College of Computing and Information Technology Taif University Taif 21974 Saudi Arabia Visual Analytics for Knowledge Laboratory (VIS2KNOW Lab) Department of Applied Artificial Intelligence College of Computing and Informatics Sungkyunkwan University Seoul 03063 South Korea
To address the issue of information redundancy (such as color and vehicle model) caused by excessive emphasis on local features in vehicle re-identification, this paper proposes a Synergistic Learning Network with Emb... 详细信息
来源: 评论
Backdoor-Empowered Regulable Privilege Authorization for Edge-Level Graph Learning in 6G Vehicular Networks
收藏 引用
IEEE Transactions on Consumer Electronics 2025年
作者: Yang, Xiao Li, Gaolei Wu, Jun Zhou, Kai Li, Jianhua Yang, Wu Shanghai Jiao Tong University School of Electronic Information and Electrical Engineering Shanghai China Shanghai Key Laboratory of Integrated Administration Technologies for Information Security Shanghai China The Hong Kong Polytechnic University Department of Computing Hong Kong Harbin Engineering University College of Computer Science and Technology Harbin China
Edge-Level Graph Learning System (EGLS) exhibits diverse applicability in flow prediction, route planning, and accident forecasting. Existing EGLS studies extremely stress absolute fairness and impartiality for all us... 详细信息
来源: 评论
Reversible Data Hiding With Secret Encrypted Image Sharing and Adaptive Coding
收藏 引用
IEEE Internet of Things Journal 2025年
作者: Fang, Guangtian Wang, Feng Zhao, Chenbin Qin, Chuan Chang, Ching-Chun Chang, Chin-Chen Fujian University of Technology College of Computer Science and Mathematics Fuzhou350118 China Fujian University of Technology College of Computer Science and Mathematics Key Laboratory of Big Data Mining and Applications Fuzhou350118 China Monash University Faculty of IT Department of Software Systems and Cybersecurity VIC3800 Australia Ministry of Education School of Cyber Science and Engineering Key Laboratory of Aerospace Information Security and Trusted Computing Wuhan430072 China University of Shanghai for Science and Technology School of Optical-Electrical and Computer Engineering Shanghai200093 China Feng Chia University Information and Communication Security Research Center Taichuang 40724 Taiwan Feng Chia University Department of Information Engineering and Computer Science Taichung40724 Taiwan
To ensure the security of image information and facilitate efficient management in the cloud, the utilization of reversible data hiding in encrypted images (RDHEI) has emerged as pivotal. However, most existing RDHEI ... 详细信息
来源: 评论