This paper addresses the robust finite-time stabi-lization (FTS) issue for stochastic parabolic PDE systems via non-fragile spatial sampled-data control scheme. First, a class of distributed parameter systems characte...
This paper addresses the robust finite-time stabi-lization (FTS) issue for stochastic parabolic PDE systems via non-fragile spatial sampled-data control scheme. First, a class of distributed parameter systems characterized by the delayed stochastic parabolic partial differential equation is developed for analyzing the effects of stochastic disturbance, structural uncertainty, and discrete delay on the system performance. Then, a non-fragile spatial sampled-data control scheme is established by setting sampling points in the spatial domain, which effectively saves communication resources and ensures that the closed-loop system maintains good performance when the controller is perturbed. Moreover, based on the partial differential equation theory, stochastic analysis approach, and the extended Wirtinger's inequality technique, several criteria are provided to ensure the robust FTS of stochastic parabolic PDE systems in the mean square sense. Lastly, a numerical example is provided to verify the feasibility of the suggested stabilization criteria and control scheme.
Molten iron is the primary output of blast furnace production. The content of silicon in molten iron clearly correlates with blast furnace temperature. However, due to the intricate conditions of blast furnace product...
详细信息
Molten iron is the primary output of blast furnace production. The content of silicon in molten iron clearly correlates with blast furnace temperature. However, due to the intricate conditions of blast furnace production, the silicon content in molten iron is nonlinear and unstable. Therefore, this paper adopts variational mode decomposition (VMD) to decompose and extract the feature information of the real silicon content data of LY Steel in March 2022, then uses Grey Wolf optimization (GWO) algorithm to optimize the parameters of the support vector regression (SVR) prediction model, and takes the decomposed data as model input for experimental verification. By comparing the predicted results with the real historical data of blast furnace production, it is found that the degree of fit is about 94.2%, which offers a new idea for the prediction of silicon content.
Landslide displacement prediction is an important and indispensable part of landslide monitoring and warning. The change of the displacement is always considered being related to inducing factors, which are aimed at i...
Landslide displacement prediction is an important and indispensable part of landslide monitoring and warning. The change of the displacement is always considered being related to inducing factors, which are aimed at improving accuracy of the predicted model. However, the seasonal characteristic of the displacement, which has not been carefully analyzed, reveals the law of inducing factors. In order to gain a deeper understanding of characteristics, the Baijiabao landslide is taken as an example. The variational mode decomposition (VMD) method, which can extract effective information well, is introduced to decompose the displacement. Introducing the seasonal parameters, the seasonal autoregressive integrated moving average (SARIMA) model is established to predict the displacement subseries. Finally, accumulative displacement prediction values are obtained by superimposing the predicted subseries. With higher accuracy and lower error, the VMD-SARIMA model proves a better option in application compared with VMD-ARIMA, SARIMA and ARIMA models.
In this paper, a template matching and trend feature analysis-based data pre-processing method for seismic wave detection is proposed with two stages. In the first stage, it involves extracting the rock physical param...
In this paper, a template matching and trend feature analysis-based data pre-processing method for seismic wave detection is proposed with two stages. In the first stage, it involves extracting the rock physical parameters from seismic wave detection results using OCR (Optical Character Recognition) method, and extracting the original rock physical parameters from the raw rock property table using keyword matching method. Using the rock physical parameters as a template, a template matching approach is employed to eliminate abnormal values from the original rock physical parameters. In the next stage, a technique is proposed to extract trend features of rock physical parameters for conducting advanced geological forecasting, which considered the expertise of experts in interpreting seismic wave detection data. Finally, the effectiveness of the proposed method is verified by the compared simulation results.
Establishing the dynamics model of the offshore drilling experimental system can better complete the offshore drilling test in the laboratory environment and reduce the cost of testing.A dynamical modeling method for ...
Establishing the dynamics model of the offshore drilling experimental system can better complete the offshore drilling test in the laboratory environment and reduce the cost of testing.A dynamical modeling method for the offshore drilling experimental system built on the double-layer Stewart parallel mechanism is ***,the kinematic and dynamical characteristics of the double-layer Stewart parallel mechanism are combined with the Lagrange method and the virtual work method to establish the dynamics model of the *** a parameter identification scheme is designed using a nonlinear gray system estimation method based on the trust-domain reflection algorithm,and the model parameters are *** model is downscaled to improve the feasibility of the identification scheme and the accuracy of the identified *** actual experimental system data verify this model's correctness and the model parameters' accuracy.
The surface defects of ceramic tile greatly affect the service life of ceramic tile. At present, many detection methods of ceramic tile surface defects are mostly used for ceramic tiles with monochrome background or s...
The surface defects of ceramic tile greatly affect the service life of ceramic tile. At present, many detection methods of ceramic tile surface defects are mostly used for ceramic tiles with monochrome background or simple texture. However, many tiles with complex and irregular surface patterns are used in practical applications, but many methods cannot effectively detect surface defects in such tiles. This paper presents a double input feature difference network structure to overcome the limitation. First, a double input channel is constructed to extract features from the template image and the defect image respectively. Next, a method of feature difference is performed at different depths to suppress the background interference and prevent misclassification between different defect categories. Then a parameter-free attention module is embedded in the backbone to improve the ability of feature extraction. Experimental results show that this model effectively improves the mean average accuracy of 8.3% and the recall rate of 11.7%.
Landslide disasters are extremely destructive. Accurate identification of landslides plays an important role in disaster assessment, loss control and post-disaster reconstruction. This paper proposes a semantic segmen...
Landslide disasters are extremely destructive. Accurate identification of landslides plays an important role in disaster assessment, loss control and post-disaster reconstruction. This paper proposes a semantic segmentation landslide identification method based on improved U-Net. The deep convolution neural network and jump connection method is used for end-to-end semantic segmentation to achieve deep feature extraction and fusion of different receptive fields, thus enriching feature information. SENet modules are adopted to enhance the ability of the model to extract important features, so as to further improve the accuracy of model recognition. Extensive experiments show that our improved U-Net achieves better performance than the original algorithm on our landslide datasets. The results of Iou are improved by 4.12% which demonstrates our work is of great significance for the research of landslide area identification. Finally, the model is deployed to the web and applied to the geological hazard intelligent monitoring system to realize the landslide identification task.
This article investigates the asynchronous fault detection (FD) problem for fuzzy systems with event-triggered mechanism (ETM). A new dynamic ETM (DETM) is adopted to further reduce the waste of network resources. Con...
This article investigates the asynchronous fault detection (FD) problem for fuzzy systems with event-triggered mechanism (ETM). A new dynamic ETM (DETM) is adopted to further reduce the waste of network resources. Considering the impact of asynchronous premise variables brought by ETM, a design criterion for fuzzy FD filter (FDF) is derived. A reasonable residual evaluation function is constructed and an appropriate threshold is set. To ensure the error dynamics be asymptotically stable with a prescribed $H_{\infty}$ performance, we construct a new Lyapunov function that contains an internal dynamic variable in the ETM. A sufficient condition satisfying the proposed performance index is derived. Finally, we provide a numerical simulation to verify the effectiveness of the proposed asynchronous FD strategy under dynamic event-triggered (ET) communication.
With the bursting of autonomous and assistant driving systems, traffic accident prediction has attracted increasing attention during the past few years. However, predicting traffic accidents is extremely challenging d...
详细信息
Constant current (CC) based power distribution is widely used in the submarine power supply grid for its robustness against cable impedance and short circuit faults. An input-series-output-parallel (ISOP) modularized ...
Constant current (CC) based power distribution is widely used in the submarine power supply grid for its robustness against cable impedance and short circuit faults. An input-series-output-parallel (ISOP) modularized CC-to-CV converter is be used to provide constant voltage (CV) for the submarine instruments. In this paper, an imbalance control with stratified voltage is proposed for the modularized CC-to-CV converter by switching modules to adjust the power. The power of each power module is decided by the output voltage realizing auto and seamless module switching. Specially, only one module is regulated to adjust the power, other modules are out of control working either in full power or in standby, improving the efficiency for light power conditions. The modeling and analysis of the modularized CC-to-CV converter is also presented, as well as the proposed the control method. Finally, a prototype is built to verify the proposed method.
暂无评论