Single cell RNA sequencing (scRNA-seq) technology can study gene expression in single cell resolution and solve cell heterogeneity that cannot be solved by the traditional RNA sequencing (Bulk RNA-seq) technology. It ...
详细信息
Constant current (CC) based power distribution is widely used in the submarine power supply grid for its robustness against cable impedance and short circuit faults. An input-series-output-parallel (ISOP) modularized ...
Constant current (CC) based power distribution is widely used in the submarine power supply grid for its robustness against cable impedance and short circuit faults. An input-series-output-parallel (ISOP) modularized CC-to-CV converter is be used to provide constant voltage (CV) for the submarine instruments. In this paper, an imbalance control with stratified voltage is proposed for the modularized CC-to-CV converter by switching modules to adjust the power. The power of each power module is decided by the output voltage realizing auto and seamless module switching. Specially, only one module is regulated to adjust the power, other modules are out of control working either in full power or in standby, improving the efficiency for light power conditions. The modeling and analysis of the modularized CC-to-CV converter is also presented, as well as the proposed the control method. Finally, a prototype is built to verify the proposed method.
With the rapid development of sequencing technology, researchers can obtain a large number of single cell RNA sequencing (scRNA-seq) data which is useful for analysis of cell fate decision and growth process at indivi...
详细信息
Effective identification of faults or abnormal conditions can help operators make corrective decisions and plan equipment maintenance. Sequence matching and cluster analysis are important methods to distinguish differ...
Effective identification of faults or abnormal conditions can help operators make corrective decisions and plan equipment maintenance. Sequence matching and cluster analysis are important methods to distinguish different faults. Most existing sequence matching methods mainly focus on alarm event sequences, which reflect the amplitude change characteristics of process data. However, due to the complexity of the equipment and the coupling between variables, alarm event sequences caused by different faults may still assemble each other in a certain extent, which makes it difficult to distinguish faults based on alarms only. To solve this problem, this paper proposes a sequence similarity analysis method combining both alarm and trend events. A qualitative trend representation method is proposed to extract trend changes as trend events. A feature event fusion method is proposed to generate a hybrid sequence to distinguish different fault sequences. The proposed method is evaluated based on data generated by the Tennessee Eastman process model.
In this article, we pay attention to event-based model predictive control (MPC) for load frequency control of multi-area power system. Considering the practical issues, the inputs are subject to hard constraints. A no...
In this article, we pay attention to event-based model predictive control (MPC) for load frequency control of multi-area power system. Considering the practical issues, the inputs are subject to hard constraints. A novel dynamic event-triggered mechanism (DETM) which contains an additive internal dynamic variable and an adjusting variable is designed to reduce data transmission burden. The MPC problem is expressed as a “min-max“ optimisation problem. By considering the effects of load disturbances and the DETM, we give the design approach for the controller which integrates H 2 and $H$ ∞ performance indexes through an auxiliary optimization problem. A simulation example is provided to verify the effectiveness of the proposed algorithm.
This paper explores the finite-time synchronization of a class of discrete-time nonlinear singularly perturbed complex networks using a dynamic event-triggered mechanism (DETM). The DETM is designed to optimize packet...
This paper explores the finite-time synchronization of a class of discrete-time nonlinear singularly perturbed complex networks using a dynamic event-triggered mechanism (DETM). The DETM is designed to optimize packet transmission, aiming to conserve network resources. By constructing a Lyapunov function considering singularly perturbed parameters (SPPs) and DETM information, a sufficient condition for the dynamics of synchronization error system to be finite-time stable is given. The parameters of the synchronization controller can be determined by solving a set of matrix inequalities. The effectiveness of the proposed controller is demonstrated through a numerical example.
High precision modeling in industrial systems is difficult and costly. Model-free intelligentcontrol methods, represented by reinforcement learning, have been applied in industrial systems broadly. The hard evaluated...
详细信息
High precision modeling in industrial systems is difficult and costly. Model-free intelligentcontrol methods, represented by reinforcement learning, have been applied in industrial systems broadly. The hard evaluated of production states and the low value density of processing data causes sparse rewards, which lead to an insufficient performance of reinforcement learning. To overcome the difficulty of reinforcement learning in sparse reward scenes, a reinforcement learning method with reward shaping and hybrid exploration is proposed. By perfecting the rewards distribution in the state space of environment, the reward shaping can make the state-value estimation of reinforcement learning more accurate. By improving the rewards distribution in time dimension, the hybrid exploration can make the iteration of reinforcement learning more efficient and more stable. Finally, the effectiveness of the proposed method is verified by simulations.
A high-reliability constant current to constant voltage power supply system has the advantages of small volume of switching power supply, high power density, high efficiency was proposed. This paper use two controller...
A high-reliability constant current to constant voltage power supply system has the advantages of small volume of switching power supply, high power density, high efficiency was proposed. This paper use two controllers to control the shunt regulator(SR) circuit and single-end flyback converter part, and separate the two parts for small signal modeling and give the parameters to stabilize the closed loop. The state space average modeling idea was used to solve the state equations for the modes of the converters in a switching cycle. In order to ensure the stability of cascade system, this paper collaborative optimization of hardware filter parameters and the appropriate PI parameter design. The experimentals verify the correctness of our theory, and the system has good stability under closed-loop conditions.
Due to the significant time lag and under-regulation, predicting the blast furnace gas generation and formulating its scheduling strategy is complex. This paper proposes a blast furnace gas generation prediction metho...
详细信息
Due to the significant time lag and under-regulation, predicting the blast furnace gas generation and formulating its scheduling strategy is complex. This paper proposes a blast furnace gas generation prediction method based on time series feature extraction and designs a blast furnace gas scheduling strategy based on the prediction results. Firstly, Pearson correlation analysis is used to identify the parameters that have a significant correlation with the blast furnace gas generation, and the selected parameters are decomposed into several intrinsic mode components with different frequency characteristics using the complete ensemble empirical mode decomposition; Then, the principal component analysis method is used to extract the principal components of several intrinsic modal components, and these principal components are employed as the inputs of long short-term memory neural network to predict the blast furnace gas generation; Finally, according to the prediction results designs the scheduling strategy of blast furnace gas. The experiment and contrast experiments are carried out with the industrial field data, and experimental results illustrate that the proposed method is correct and effective.
Troublesome incidents like sudden water inflows increase the risk of collapse accidents in tunnel excavation. In this study, a data-driven underground water prediction method is proposed based on trend features extrac...
Troublesome incidents like sudden water inflows increase the risk of collapse accidents in tunnel excavation. In this study, a data-driven underground water prediction method is proposed based on trend features extracted from apparent resistivity. A novel framework is developed for extracting trend features from the contour lines of apparent resistivity. These trend features are subsequently integrated with numerical features from the resistivity matrix for classification. The effectiveness of the proposed method is demonstrated by apparent resistivity data from real tunnel engineering. The result indicates that the classification accuracy of the proposed method outperforms the method without feature extraction.
暂无评论