咨询与建议

限定检索结果

文献类型

  • 973 篇 会议
  • 151 篇 期刊文献

馆藏范围

  • 1,124 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 738 篇 工学
    • 316 篇 软件工程
    • 251 篇 计算机科学与技术...
    • 246 篇 控制科学与工程
    • 232 篇 机械工程
    • 109 篇 电气工程
    • 103 篇 电子科学与技术(可...
    • 73 篇 仪器科学与技术
    • 67 篇 信息与通信工程
    • 36 篇 生物工程
    • 34 篇 冶金工程
    • 31 篇 化学工程与技术
    • 29 篇 石油与天然气工程
    • 28 篇 动力工程及工程热...
    • 28 篇 地质资源与地质工...
    • 26 篇 光学工程
    • 24 篇 材料科学与工程(可...
    • 24 篇 生物医学工程(可授...
    • 20 篇 土木工程
    • 17 篇 建筑学
  • 336 篇 理学
    • 171 篇 数学
    • 124 篇 系统科学
    • 77 篇 物理学
    • 49 篇 统计学(可授理学、...
    • 36 篇 生物学
    • 25 篇 化学
    • 21 篇 地质学
    • 19 篇 地球物理学
  • 126 篇 管理学
    • 102 篇 管理科学与工程(可...
    • 25 篇 图书情报与档案管...
  • 20 篇 医学
    • 17 篇 临床医学
  • 7 篇 经济学
  • 6 篇 农学
  • 3 篇 法学
  • 3 篇 教育学
  • 2 篇 军事学
  • 2 篇 艺术学

主题

  • 43 篇 feature extracti...
  • 35 篇 training
  • 34 篇 stability analys...
  • 31 篇 neural networks
  • 30 篇 predictive model...
  • 27 篇 simulation
  • 25 篇 control systems
  • 23 篇 delays
  • 22 篇 optimization
  • 22 篇 mathematical mod...
  • 20 篇 automation
  • 20 篇 accuracy
  • 18 篇 deep learning
  • 18 篇 emotion recognit...
  • 18 篇 geology
  • 18 篇 data models
  • 17 篇 support vector m...
  • 17 篇 prediction algor...
  • 16 篇 time delay
  • 16 篇 drilling

机构

  • 876 篇 hubei key labora...
  • 759 篇 school of automa...
  • 384 篇 engineering rese...
  • 43 篇 ministry of educ...
  • 42 篇 school of engine...
  • 38 篇 hubei key labora...
  • 34 篇 china university...
  • 31 篇 china university...
  • 31 篇 school of automa...
  • 29 篇 school of automa...
  • 27 篇 school of future...
  • 24 篇 school of engine...
  • 23 篇 school of automa...
  • 18 篇 school of mechan...
  • 15 篇 school of automa...
  • 13 篇 hubei key labora...
  • 12 篇 hubei key labora...
  • 12 篇 school of inform...
  • 11 篇 school of automa...
  • 11 篇 engineering rese...

作者

  • 155 篇 min wu
  • 81 篇 weihua cao
  • 70 篇 xin chen
  • 68 篇 jinhua she
  • 59 篇 wu min
  • 50 篇 luefeng chen
  • 43 篇 yong he
  • 38 篇 chengda lu
  • 37 篇 chuan-ke zhang
  • 37 篇 cao weihua
  • 30 篇 xiongbo wan
  • 30 篇 jianqi an
  • 29 篇 kaifeng dong
  • 28 篇 fang jin
  • 27 篇 junlei song
  • 27 篇 wenkai hu
  • 26 篇 xuzhi lai
  • 26 篇 yan yuan
  • 25 篇 feng liu
  • 25 篇 wenqin mo

语言

  • 1,001 篇 英文
  • 120 篇 其他
  • 7 篇 中文
检索条件"机构=Hubei Key Laboratory of Advanced Control and IntelligentAutomation for Complex Systems"
1124 条 记 录,以下是971-980 订阅
排序:
An optimization method for coupling matrix elements of microwave filter
An optimization method for coupling matrix elements of micro...
收藏 引用
第37届中国控制会议
作者: Xiao-Long Zhuang Wei-Hua Cao Yan Yuan Can Liu Yu-Sheng Guo School of Automation China University of Geosciences China Hubei key Laboratory of Advanced Control and Intelligent Automation for Complex Systems
This paper proposes a coupling matrix element optimization method for microwave filters. The traditional method is more complex and does not directly optimize the filter coupling matrix elements. The firefly algorithm... 详细信息
来源: 评论
Convolutional Neural Networks for Facial Expression Recognition with Few Training Samples
Convolutional Neural Networks for Facial Expression Recognit...
收藏 引用
Chinese control Conference
作者: Zhongzhao Xie Yongbo Li Xinmei Wang Wendi Cai Jing Rao Zhenzhu Liu Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems Wuhan P. R. China
Facial expression recognition (FER) plays an important role in human-machine interaction. An assistant robot having a close interaction with human being should be able to recognize human facial expression. FER is a no... 详细信息
来源: 评论
Unscented Kalman Filter for Nonlinear systems with One-step Randomly Delayed Measurements and Colored Measurement Noises
Unscented Kalman Filter for Nonlinear Systems with One-step ...
收藏 引用
Chinese control Conference (CCC)
作者: Xinmei Wang Zhenzhu Liu Leimin Wang Feng Liu Wei Liu Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems Wuhan P. R. China
In this paper, a new unscented Kalman filter (Unscented Kalman filter, UKF) for nonlinear system with both one-step randomly delayed measurements and colored measurement noises is proposed. Firstly, the first-order Ma... 详细信息
来源: 评论
Image Jacobian Matrix Estimation based on Fuzzy Adaptive Robust Kalman Filter
Image Jacobian Matrix Estimation based on Fuzzy Adaptive Rob...
收藏 引用
Chinese control Conference
作者: Zhenzhu Liu Xinmei Wang Zhenjiang Feng Zhongzhao Xie Shuai Ke Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems Wuhan P. R. China
Aiming at the problem of image Jacobian matrix estimation, this paper proposes a method to get the motion state estimation of the object feature point at the current time by using the combination of robust Kalman filt... 详细信息
来源: 评论
Synchronous Detector for GMI Magnetic Sensor Based on Lock-in Amplifier
Synchronous Detector for GMI Magnetic Sensor Based on Lock-i...
收藏 引用
Chinese control Conference (CCC)
作者: Jinchao Wang Fang Jin Lei Zhu Zhi Zhao Hengchang Rao Junlei Song Kaifeng Dong M Wenqin Hubei key Laboratory of Advanced Control and Intelligent Automation for Complex Systems Wuhan P. R. China
A new concept of a synchronous detector for Giant Magneto-Impedance (GMI) sensors is presented. This concept combines a lock-in amplifier, with outstanding capabilities, high speed and a feedback approach that ensures... 详细信息
来源: 评论
Load Frequency control in Power systems via A Sampled-Data controller  37
Load Frequency Control in Power Systems via A Sampled-Data C...
收藏 引用
37th Chinese control Conference, CCC 2018
作者: Shangguau, Xing Chen He, Yong Jiang, Lin School of Automation China University of Geosciences Wuhan430074 China Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems Wuhan430074 China University of Liverpool Brownlow Hill LiverpoolL69 3GJ United Kingdom
In modern power systems, load frequency control (LFC) scheme usually operates in the discrete mode, while the most existing LFC schemes are designed in the continuous mode, such that those LFC schemes do not work usua... 详细信息
来源: 评论
Load Frequency control in Power systems via A Sampled-Data controller
Load Frequency Control in Power Systems via A Sampled-Data C...
收藏 引用
第37届中国控制会议
作者: XingChen ShangGuan Yong He Lin Jiang School of Automation China University of Geosciences Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems University of Liverpool
In modern power systems, load frequency control(LFC) scheme usually operates in the discrete mode, while the most existing LFC schemes are designed in the continuous mode, such that those LFC schemes do not work usual... 详细信息
来源: 评论
Development of electric cart for improving walking ability — application of control theory to assistive technology
收藏 引用
Science China(Information Sciences) 2017年 第12期60卷 262-270页
作者: Jinhua SHE Yasuhiro OHYAMA Min WU Hiroshi HASHIMOTO School of Engineering Tokyo University of Technology School of Automation China University of Geosciences Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems Master Program of Innovation for Design & Engineering Advanced Institute of Industrial Technology
This paper explains the development of an electric cart that helps the elderly maintain or improve their physical strength. Unlike commercially available ones, it has a pedal unit that provides some exercise for a use... 详细信息
来源: 评论
Measurement System of Ferromagnetic Film Magnetic Properties Based on Mazneto-optical Kerr Effect
Measurement System of Ferromagnetic Film Magnetic Properties...
收藏 引用
Chinese control Conference (CCC)
作者: Xueying Fu Wenqin Mo Shun Yuan Liming Xu Junlei Song Kaifeng Dong Fang Jin Hubei key Laboratory of Advanced Control and Intelligent Automation for Complex Systems Wuhan China Hubei key Lab. of Adv. Control & Intell. Autom. for Complex Syst. Wuhan China
A new measuring system for magnetic properties of the ferromagnetic thin film has developed based on magneto-optical Kerr effect (MOKE). This system can realize both polar MOKE and longitudinal MOKE measurements throu... 详细信息
来源: 评论
Multi-Convolution Neural Networks-Based Deep Learning Model for Emotion Understanding
Multi-Convolution Neural Networks-Based Deep Learning Model ...
收藏 引用
Chinese control Conference
作者: Luefeng Chen Min Wu Wanjuan Su Kaoru Hirota Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems Wuhan China Tokyo Institute of Technology Yokohama Japan
Multi-convolution neural networks-based deep learning model in combination with multimodal data for emotion understanding is proposed, in which facial expression and body gesture are used to achieve emotional states r... 详细信息
来源: 评论