咨询与建议

限定检索结果

文献类型

  • 2,488 篇 期刊文献
  • 1,920 篇 会议
  • 1 册 图书

馆藏范围

  • 4,409 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,803 篇 工学
    • 1,893 篇 计算机科学与技术...
    • 1,540 篇 软件工程
    • 605 篇 信息与通信工程
    • 358 篇 电气工程
    • 338 篇 控制科学与工程
    • 326 篇 生物工程
    • 236 篇 化学工程与技术
    • 216 篇 电子科学与技术(可...
    • 184 篇 生物医学工程(可授...
    • 171 篇 光学工程
    • 162 篇 机械工程
    • 120 篇 动力工程及工程热...
    • 111 篇 材料科学与工程(可...
    • 95 篇 仪器科学与技术
    • 94 篇 交通运输工程
    • 93 篇 土木工程
    • 86 篇 建筑学
    • 86 篇 网络空间安全
  • 1,676 篇 理学
    • 773 篇 数学
    • 507 篇 物理学
    • 412 篇 生物学
    • 265 篇 统计学(可授理学、...
    • 262 篇 化学
    • 104 篇 系统科学
  • 728 篇 管理学
    • 415 篇 管理科学与工程(可...
    • 335 篇 图书情报与档案管...
    • 151 篇 工商管理
  • 257 篇 医学
    • 202 篇 临床医学
    • 125 篇 基础医学(可授医学...
  • 130 篇 法学
    • 101 篇 社会学
  • 92 篇 农学
  • 81 篇 经济学
  • 43 篇 教育学
  • 14 篇 文学
  • 7 篇 军事学
  • 4 篇 艺术学

主题

  • 148 篇 semantics
  • 125 篇 feature extracti...
  • 118 篇 deep learning
  • 109 篇 training
  • 85 篇 computational mo...
  • 69 篇 machine learning
  • 67 篇 accuracy
  • 62 篇 data mining
  • 62 篇 federated learni...
  • 60 篇 convolution
  • 57 篇 data models
  • 55 篇 predictive model...
  • 53 篇 graph neural net...
  • 48 篇 hadrons
  • 46 篇 adaptation model...
  • 45 篇 neural networks
  • 45 篇 contrastive lear...
  • 44 篇 object detection
  • 42 篇 visualization
  • 41 篇 image segmentati...

机构

  • 228 篇 university of ch...
  • 171 篇 iccub universita...
  • 170 篇 department of ph...
  • 170 篇 infn sezione di ...
  • 168 篇 infn sezione di ...
  • 168 篇 yandex school of...
  • 165 篇 cavendish labora...
  • 165 篇 school of physic...
  • 163 篇 infn sezione di ...
  • 162 篇 infn sezione di ...
  • 161 篇 van swinderen in...
  • 159 篇 horia hulubei na...
  • 157 篇 h.h. wills physi...
  • 157 篇 department of ph...
  • 147 篇 imperial college...
  • 137 篇 stfc rutherford ...
  • 136 篇 universiteit maa...
  • 134 篇 institute of par...
  • 126 篇 center for high ...
  • 125 篇 state key labora...

作者

  • 116 篇 beiter a.
  • 116 篇 arzymatov k.
  • 116 篇 barter w.
  • 116 篇 brundu d.
  • 115 篇 bellee v.
  • 102 篇 bowcock t.j.v.
  • 102 篇 casse g.
  • 102 篇 blake t.
  • 102 篇 borsato m.
  • 102 篇 betancourt c.
  • 102 篇 belin s.
  • 102 篇 amato s.
  • 102 篇 boettcher t.
  • 101 篇 bobulska d.
  • 101 篇 afsharnia h.
  • 100 篇 belavin v.
  • 100 篇 bediaga i.
  • 100 篇 cali s.
  • 100 篇 baryshnikov f.
  • 100 篇 bjørn m.

语言

  • 3,536 篇 英文
  • 805 篇 其他
  • 89 篇 中文
  • 3 篇 德文
  • 3 篇 法文
  • 3 篇 葡萄牙文
  • 1 篇 荷兰文
检索条件"机构=Hubei Key Laboratory of Big Data in Science and Technology"
4409 条 记 录,以下是361-370 订阅
排序:
Transverse Velocity Field Measurements in High-resolution Solar Images Based on Deep Learning
收藏 引用
Research in Astronomy and Astrophysics 2023年 第6期23卷 86-97页
作者: Zhen-Hong Shang Si-Yu Mu Kai-Fan Ji Zhen-Ping Qiang Faculty of Information Engineering and Automation Kunming University of Science and TechnologyKunming 650500China Yunnan Key Laboratory of Artificial Intelligence Kunming University of Science and TechnologyKunming 650500China Yunnan Observatories Chinese Academy of SciencesKunming 650216China College of Big Data and Intelligent Engineering Southwest Forestry UniversityKunming 650224China
To address the problem of the low accuracy of transverse velocity field measurements for small targets in highresolution solar images,we proposed a novel velocity field measurement method for high-resolution solar ima... 详细信息
来源: 评论
Federated Intelligence for Intelligent Vehicles
IEEE Transactions on Intelligent Vehicles
收藏 引用
IEEE Transactions on Intelligent Vehicles 2024年 第5期9卷 1-5页
作者: Zhang, Weishan Zhang, Baoyu Jia, Xiaofeng Qi, Hongwei Qin, Rui Li, Juanjuan Tian, Yonglin Liang, Xiaolong Wang, Fei-Yue School of China University of Petroleum Qingdao China Department of Data Management Big Data Centre Beijing Beijing China Technology Company Beijing China State Key Laboratory of Multimodal Artificial Intelligence Systems Institute of Automation Chinese Academy of Sciences Beijing China Faculty of Innovation Engineering Macau University of Science and Technology Macao China State Key Laboratory for Management and Control of Complex Systems Institute of Automation Chinese Academy of Sciences Beijing China
This letter is a brief summary of a series of IEEE TIV's decentralized and hybrid workshops (DHWs) on Federated Intelligence for Intelligent Vehicles. The discussed results are: 1) Different scales of large models... 详细信息
来源: 评论
Biomedical knowledge graph construction of Sus scrofa and its application in anti-PRRSV traditional Chinese medicine discovery
收藏 引用
Animal Diseases 2025年 第2期 220-234页
作者: Mingyang Cui Zhigang Hao Yanguang Liu Bomin Lv Hongyu Zhang Yuan Quan Li Qin Hubei Key Laboratory of Agricultural Bioinformatics College of InformaticsHuazhong Agricultural University Hubei Engineering Technology Research Center of Agricultural Big Data College of InformaticsHuazhong Agricultural University
As a new data management paradigm,knowledge graphs can integrate multiple data sources and achieve quick responses,reasoning and better predictions in drug *** by powerful contagion and a high rate of morbidity and mo...
来源: 评论
Generated and Pseudo Content guided Prototype Refinement for Few-shot Point Cloud Segmentation  38
Generated and Pseudo Content guided Prototype Refinement for...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Wei, Lili Lang, Congyan Chen, Ziyi Wang, Tao Li, Yidong Liu, Jun School of Computer Science & Technology Beijing Jiaotong University China Key Laboratory of Big Data & Artificial Intelligence in Transportation Ministry of Education China School of Computing and Communications Lancaster University United Kingdom
Few-shot 3D point cloud semantic segmentation aims to segment query point clouds with only a few annotated support point clouds. Existing prototype-based methods learn prototypes from the 3D support set to guide the s...
来源: 评论
Confidence-aware Contrastive Learning for Selective Classification  41
Confidence-aware Contrastive Learning for Selective Classifi...
收藏 引用
41st International Conference on Machine Learning, ICML 2024
作者: Wu, Yu-Chang Lyu, Shen-Huan Shang, Haopu Wang, Xiangyu Qian, Chao National Key Laboratory for Novel Software Technology Nanjing University China School of Artificial Intelligence Nanjing University China Key Laboratory of Water Big Data Technology Ministry of Water Resources Hohai University China College of Computer Science and Software Engineering Hohai University China
Selective classification enables models to make predictions only when they are sufficiently confident, aiming to enhance safety and reliability, which is important in high-stakes scenarios. Previous methods mainly use... 详细信息
来源: 评论
A multi-target UAV fault diagnosis method based on feature discriminant dimension reduction under small samples  4
A multi-target UAV fault diagnosis method based on feature d...
收藏 引用
4th International Symposium on Computer technology and Information science, ISCTIS 2024
作者: An, Xue Zhang, Yizong Li, Shaobo Xiong, Xuan Guizhou University School of Mechanical Engineering Guiyang China Guizhou University State Key Laboratory of Public Big Data Guiyang China Guizhou University College of Computer Science and Technology Guiyang China
In recent years, deep learning has provided many efficient and accurate solutions to UAV fault diagnosis, but most of the current deep learning can only deal with a single task, whereas the UAV system is a complex cou... 详细信息
来源: 评论
The Role of Depth, Width, and Tree Size in Expressiveness of Deep Forest  27
The Role of Depth, Width, and Tree Size in Expressiveness of...
收藏 引用
27th European Conference on Artificial Intelligence, ECAI 2024
作者: Lyu, Shen-Huan Wu, Jin-Hui Zheng, Qin-Cheng Ye, Baoliu Key Laboratory of Water Big Data Technology of Ministry of Water Resources Hohai University China College of Computer Science and Software Engineering Hohai University China National Key Laboratory for Novel Software Technology Nanjing University China School of Artificial Intelligence Nanjing University China
Random forests are classical ensemble algorithms that construct multiple randomized decision trees and aggregate their predictions using naive averaging. Zhou and Feng [51] further propose a deep forest algorithm with... 详细信息
来源: 评论
Semi-supervised PolSAR image classification method based on contrastive learning  6
Semi-supervised PolSAR image classification method based on ...
收藏 引用
6th International Conference on Artificial Intelligence and Pattern Recognition, AIPR 2023
作者: Hua, Wenqiang Sun, Nan Liu, Lin The Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing Xi'an Key Laboratory of Big Data and Intelligent Computing School of Computer Science and Technology Xi'an University of Posts and Telecommunications Xi'an China School of Computer Technology Xi'an University of Posts and Telecommunications Xi'an China
Polarimetric synthetic aperture radar (PolSAR) image classification has important application value and a wide range of application scenarios in many fields. Supervised classification methods, which need to use a larg... 详细信息
来源: 评论
MassNE: Exploring Higher-Order Interactions with Marginal Effect for Massive Battle Outcome Prediction  23
MassNE: Exploring Higher-Order Interactions with Marginal Ef...
收藏 引用
32nd ACM World Wide Web Conference, WWW 2023
作者: Gu, Yin Zhang, Kai Liu, Qi Lin, Xin Huang, Zhenya Chen, Enhong Anhui Province Key Laboratory of Big Data Analysis and Application University of Science and Technology of China State Key Laboratory of Cognitive Intelligence Hefei China Institute of Artificial Intelligence Hefei Comprehensive National Science Center Hefei China
In online games, predicting massive battle outcomes is a fundamental task of many applications, such as team optimization and tactical formulation. Existing works do not pay adequate attention to the massive battle. T... 详细信息
来源: 评论
Unified Grid Tagging Scheme for Aspect Sentiment Quad Prediction  31
Unified Grid Tagging Scheme for Aspect Sentiment Quad Predic...
收藏 引用
31st International Conference on Computational Linguistics, COLING 2025
作者: Su, Guixin Zhang, Yongcheng Wang, Tongguan Wu, Mingmin Sha, Ying Key Laboratory of Smart Farming for Agricultural Animals Wuhan China Engineering Research Center of Intelligent Technology for Agriculture Ministry of Education China Hubei Engineering Technology Research Center of Agricultural Big Data Wuhan China College of Informatics Huazhong Agricultural University Wuhan China
Aspect Sentiment Quad Prediction (ASQP) aims to extract all sentiment elements in quads for a given review to explain the reason for the sentiment. Previous table-filling based methods have achieved promising results ... 详细信息
来源: 评论