咨询与建议

限定检索结果

文献类型

  • 2,441 篇 期刊文献
  • 1,900 篇 会议
  • 1 册 图书

馆藏范围

  • 4,342 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,753 篇 工学
    • 1,853 篇 计算机科学与技术...
    • 1,520 篇 软件工程
    • 583 篇 信息与通信工程
    • 329 篇 电气工程
    • 325 篇 生物工程
    • 317 篇 控制科学与工程
    • 234 篇 化学工程与技术
    • 206 篇 电子科学与技术(可...
    • 181 篇 生物医学工程(可授...
    • 167 篇 光学工程
    • 156 篇 机械工程
    • 118 篇 动力工程及工程热...
    • 115 篇 材料科学与工程(可...
    • 92 篇 土木工程
    • 91 篇 交通运输工程
    • 89 篇 仪器科学与技术
    • 83 篇 建筑学
  • 1,650 篇 理学
    • 773 篇 数学
    • 495 篇 物理学
    • 407 篇 生物学
    • 272 篇 统计学(可授理学、...
    • 255 篇 化学
    • 104 篇 系统科学
  • 716 篇 管理学
    • 406 篇 管理科学与工程(可...
    • 327 篇 图书情报与档案管...
    • 150 篇 工商管理
  • 245 篇 医学
    • 192 篇 临床医学
    • 121 篇 基础医学(可授医学...
  • 128 篇 法学
    • 99 篇 社会学
  • 88 篇 农学
  • 80 篇 经济学
    • 80 篇 应用经济学
  • 38 篇 教育学
  • 14 篇 文学
  • 7 篇 军事学
  • 4 篇 艺术学

主题

  • 145 篇 semantics
  • 123 篇 feature extracti...
  • 116 篇 deep learning
  • 108 篇 training
  • 83 篇 computational mo...
  • 67 篇 machine learning
  • 65 篇 accuracy
  • 61 篇 data mining
  • 61 篇 federated learni...
  • 60 篇 convolution
  • 55 篇 predictive model...
  • 55 篇 data models
  • 52 篇 graph neural net...
  • 48 篇 hadrons
  • 47 篇 contrastive lear...
  • 45 篇 neural networks
  • 45 篇 adaptation model...
  • 42 篇 object detection
  • 42 篇 visualization
  • 40 篇 task analysis

机构

  • 224 篇 university of ch...
  • 172 篇 iccub universita...
  • 171 篇 department of ph...
  • 171 篇 infn sezione di ...
  • 169 篇 infn sezione di ...
  • 169 篇 yandex school of...
  • 166 篇 cavendish labora...
  • 166 篇 school of physic...
  • 164 篇 infn sezione di ...
  • 164 篇 infn sezione di ...
  • 162 篇 van swinderen in...
  • 160 篇 horia hulubei na...
  • 160 篇 department of ph...
  • 158 篇 h.h. wills physi...
  • 153 篇 imperial college...
  • 139 篇 stfc rutherford ...
  • 137 篇 universiteit maa...
  • 137 篇 institute of par...
  • 128 篇 center for high ...
  • 125 篇 massachusetts in...

作者

  • 117 篇 beiter a.
  • 117 篇 arzymatov k.
  • 117 篇 barter w.
  • 117 篇 brundu d.
  • 116 篇 bellee v.
  • 103 篇 bowcock t.j.v.
  • 103 篇 casse g.
  • 103 篇 blake t.
  • 103 篇 borsato m.
  • 103 篇 betancourt c.
  • 103 篇 belin s.
  • 103 篇 amato s.
  • 103 篇 boettcher t.
  • 102 篇 bobulska d.
  • 102 篇 afsharnia h.
  • 101 篇 belavin v.
  • 101 篇 bediaga i.
  • 101 篇 cali s.
  • 101 篇 baryshnikov f.
  • 101 篇 bjørn m.

语言

  • 3,698 篇 英文
  • 576 篇 其他
  • 82 篇 中文
  • 3 篇 德文
  • 3 篇 法文
  • 2 篇 葡萄牙文
  • 1 篇 荷兰文
检索条件"机构=Hubei Key Laboratory of Big Data in Science and Technology"
4342 条 记 录,以下是4121-4130 订阅
排序:
Orderness predicts academic performance: Behavioral analysis on campus lifestyle
arXiv
收藏 引用
arXiv 2017年
作者: Cao, Yi Gao, Jian Lian, Defu Rong, Zhihai Shi, Jiatu Wang, Qing Wu, Yifan Yao, Huaxiu Zhou, Tao CompleX Lab Web Sciences Center University of Electronic Science and Technology of China Chengdu611731 China Big Data Research Center University of Electronic Science and Technology of China Chengdu611731 China Key Laboratory for NeuroInformation of Ministry of Education School of Life Science and Technology Center for Information in Medicine University of Electronic Science and Technology of China Chengdu611731 China
Quantitative understanding of relationships between students' behavioral patterns and academic performances is a significant step towards personalized education. In contrast to previous studies that mainly based o... 详细信息
来源: 评论
Whole-Genome Sequencing and Analysis of the Chinese Herbal Plant Panax notoginseng
收藏 引用
Molecular Plant 2017年 第6期10卷 899-902页
作者: Wei Chen Ling Kui Guanghui Zhang Shusheng Zhu Jing Zhang Xiao Wang Min Yang Huichuan Huang Yixiang Liu Yong Wang Yahe Li Lipin Zeng Wen Wang Xiahong He Yang Dong Shengchao Yang Biological Big Data College Yunnan Agricultural University yunnan Research Institute for Local Plateau Agriculture and Industry Kunming 650201 China State Key Laboratory of Genetic Resources and Evolution Kunming Institute of Zoology Chinese Academy of Sciences Kunming 650223 China University of Chinese Academy of Sciences Beijing 100049 China National-Local Joint Engineering Research Center on Germplasm Utilization and Innovation of Chinese Medicinal Materials in Southwest China Yunnan Agricultural University Kunming 650201 China State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education Yunnan Agricultural University Kunming 650201 China NOWBIO Technology Co. Ltd Kunming 650202 China Institute of Panax notoginseng Wenshan University Wenshan 663000 China Longjing Pharmaceutical Co. Ltd Kunming 650228 China Farlong Pharmaceutical Walnut CA 91789 USA College of Life Science Kunming University of Science and Technology Kunming 650504 China
Dear Editor Panax notoginseng (Burk.) F.H. Chen (2n = 2x = 24, common name sanqi or tianql), belonging to the Araliaceae family, is a slow-growing plant species documented in the ancient Chinese medical literature... 详细信息
来源: 评论
Advancing image understanding in poor visibility environments: A collective benchmark study
arXiv
收藏 引用
arXiv 2019年
作者: Yang, Wenhan Yuan, Ye Ren, Wenqi Liu, Jiaying Scheirer, Walter J. Wang, Zhangyang Zhang, Taiheng Zhong, Qiaoyong Xie, Di Pu, Shiliang Zheng, Yuqiang Qu, Yanyun Xie, Yuhong Chen, Liang Li, Zhonghao Hong, Chen Jiang, Hao Yang, Siyuan Liu, Yan Qu, Xiaochao Wan, Pengfei Zheng, Shuai Zhong, Minhui Su, Taiyi He, Lingzhi Guo, Yandong Zhao, Yao Zhu, Zhenfeng Liang, Jinxiu Wang, Jingwen Chen, Tianyi Quan, Yuhui Xu, Yong Liu, Bo Liu, Xin Sun, Qi Lin, Tingyu Li, Xiaochuan Lu, Feng Gu, Lin Zhou, Shengdi Cao, Cong Zhang, Shifeng Chi, Cheng Zhuang, Chubin Lei, Zhen Li, Stan Z. Wang, Shizheng Liu, Ruizhe Yi, Dong Zuo, Zheming Chi, Jianning Wang, Huan Wang, Kai Liu, Yixiu Gao, Xingyu Chen, Zhenyu Guo, Chang Li, Yongzhou Zhong, Huicai Huang, Jing Guo, Heng Yang, Jianfei Liao, Wenjuan Yang, Jiangang Zhou, Liguo Feng, Mingyue Qin, Likun Wangxuan Institute of Computer Technology Peking University Beijing100080 China Department of Computer Science and Engineering Texas A&M University TX77843 United States State Key Laboratory of Information Security Institute of Information Engineering Chinese Academy of Sciences Department of Computer Science and Engineering University of Notre Dame Notre DameIN46556 United States Department of Mechanical Engineering Zhejiang University Hangzhou310027 China Hikvision Research Institute Hangzhou310051 China Mtlab Meitu Inc. Beijing100080 China Insitute of Information Science Beijing Jiaotong University Beijing100044 China Department of Computer Science and Technology Tongji University Shanghai201804 China XPENGMOTORS Beijing China School of Computer Science and Engineering at South China University of Technology Guangzhou510006 China Tencent AI Lab Shenzhen518000 China Institute of Automation Chinese Academy of Sciences Beijing100190 China Northeastern University Shenyang110819 China Nanyang Technological University Singapore639798 Big Data Center State Grid Corporation of China Beijing China Winsense Inc. Beijing100080 China University of Chinese Academy of Sciences Beijing100049 China Department of Informatics Technical University of Munich Garching85748 Germany Institute of Microelectronics Chinese Academy of Sciences Beijing100190 China China Electric Power Research Institute Beijing100031 China Westlake University Hangzhou310024 China Department of Computer Science Durham University Durham United Kingdom Australian National University ActonACT0200 Australia Sunway-AI Co. Ltd Zhuhai China Chinese Academy of Sciences R&D Center for Internet of Things Wuxi214200 China
Existing enhancement methods are empirically expected to help the high-level end computer vision task: however, that is observed to not always be the case in practice. We focus on object or face detection in poor visi... 详细信息
来源: 评论
Study on prediction model of grain post-harvest loss
收藏 引用
Procedia Computer science 2017年 122卷 122-129页
作者: Hanxiao Yu Bingchan Li Dongqin Shen Jie Cao Bo Mao College of Information Engineering Collaborative Innovation Center for Modern Grain Circulation and Safety Jiangsu Key Laboratory of Grain Big-data Mining Nanjing University of Finance & Economics Nanjing 210023 China School of Electrical and Automation Engineering Jiangsu Maritime Institute Nanjing 211170 China Computer Science and Technology Computer Science and Engineering College Nanjing University of Science and Technology Nanjing 210094 China
With the arrival of the information age, a great deal of data has been produced in a series of process of grain post-harvest. The rational use of these data allows us to obtain more intelligent, in-depth and valuable ... 详细信息
来源: 评论
Analysis of Grain Storage Loss Based on Decision Tree Algorithm
收藏 引用
Procedia Computer science 2017年 122卷 130-137页
作者: Xueli Liu Bingchan Li Dongqin Shen Jie Cao Bo Mao College of Information Engineering Collaborative Innovation Center for Modern Grain Circulation and Safety Jiangsu Key Laboratory of Grain Big-data Mining Nanjing University of Finance & Economics Nanjing 210023 China School of Electrical and Automation Engineering Jiangsu Maritime Institute Nanjing 211170 China Computer Science and Technology Computer Science and Engineering College Nanjing University of Science and Technology Nanjing 210094 China
Different grain storage factors will cause different degrees of grain loss. In this paper, the data mining method is used to study the loss of grain storage, and the grain loss analysis and forecasting model based on ... 详细信息
来源: 评论
Analysis of the grain loss in harvest based on logistic regression
收藏 引用
Procedia Computer science 2017年 122卷 698-705页
作者: Tingkai Huang Bingchan Li Dongqin Shen Jie Cao Bo Mao College of Information Engineering Collaborative Innovation Center for Modern Grain Circulation and Safety Jiangsu Key Laboratory of Grain Big-data Mining Nanjing University of Finance & Economics Nanjing 210023 China School of Electrical and Automation Engineering Jiangsu Maritime Institute Nanjing 211170 China Computer Science and Technology Computer Science and Engineering College Nanjing University of Science and Technology Nanjing 210094 China
In this paper, the grain loss assessment was studied based on logistic regression, and 5400 samples of 31 provinces in our country in the year 2012-2014 were selected, and the 7 typical provinces among them were respe... 详细信息
来源: 评论
Cross-view Asymmetric Metric Learning for Unsupervised Person Re-identification
arXiv
收藏 引用
arXiv 2017年
作者: Yu, Hong-Xing Wu, Ancong Zheng, Wei-Shi School of Data and Computer Science Sun Yat-sen University China School of Electronics and Information Technology Sun Yat-sen University China Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education China Collaborative Innovation Center of High Performance Computing NUDT China Guangdong Key Laboratory of Big Data Analysis and Processing Guangzhou China
While metric learning is important for Person reidentification (RE-ID), a significant problem in visual surveillance for cross-view pedestrian matching, existing metric models for RE-ID are mostly based on supervised ... 详细信息
来源: 评论
Preface
Advances in Intelligent Systems and Computing
收藏 引用
Advances in Intelligent Systems and Computing 2018年 579卷 V页
作者: Lin, Jerry Chun-Wei Pan, Jeng-Shyang Chu, Shu-Chuan Chen, Chien-Ming School of Computer Science and Technology Harbin Institute of Technology Shenzhen Graduate School ShenzhenGuangdong China Fujian Provincial Key Laboratory of Big Data Mining and Applications Fujian University of Technology FuzhouFujian China School of Computer Science Engineering and Mathematics Flinders University Bedford Park SA Australia
来源: 评论
Cofactor-based NPN boolean matching algorithm
Cofactor-based NPN boolean matching algorithm
收藏 引用
International Conference on Information Management (ICIM)
作者: Juling Zhang Guowu Yang Wenqiang Guo Jinzhao Wu Big Data Research Center University of Electronic Science and Technology of China Chengdu China Computer Science & Engineering College University of Xinjiang Finance & Economics Urumqi China Guangxi Key Laboratory of Hybrid Computation and IC Design Analysis Guangxi University for Nationalities Nanning China
This paper proposes an NPN Boolean matching algorithm under the transformation of input negation and/or input permutation and/or output negation. The algorithm utilizes the cofactor signature and Shannon expansion to ... 详细信息
来源: 评论
Constraints on the KS0→μ+μ− Branching Fraction
收藏 引用
Physical Review Letters 2020年 第23期125卷 231801-231801页
作者: R. Aaij C. Abellán Beteta T. Ackernley B. Adeva M. Adinolfi H. Afsharnia C. A. Aidala S. Aiola Z. Ajaltouni S. Akar P. Albicocco J. Albrecht F. Alessio M. Alexander A. Alfonso Albero G. Alkhazov P. Alvarez Cartelle A. A. Alves, Jr. S. Amato Y. Amhis L. An L. Anderlini G. Andreassi M. Andreotti F. Archilli J. Arnau Romeu A. Artamonov M. Artuso K. Arzymatov E. Aslanides M. Atzeni B. Audurier S. Bachmann J. J. Back S. Baker V. Balagura W. Baldini A. Baranov R. J. Barlow S. Barsuk W. Barter M. Bartolini F. Baryshnikov G. Bassi V. Batozskaya B. Batsukh A. Battig A. Bay M. Becker F. Bedeschi I. Bediaga A. Beiter L. J. Bel V. Belavin S. Belin N. Beliy V. Bellee K. Belous I. Belyaev G. Bencivenni E. Ben-Haim S. Benson S. Beranek A. Berezhnoy R. Bernet D. Berninghoff H. C. Bernstein C. Bertella E. Bertholet A. Bertolin C. Betancourt F. Betti M. O. Bettler Ia. Bezshyiko S. Bhasin J. Bhom M. S. Bieker S. Bifani P. Billoir A. Bizzeti M. Bjørn M. P. Blago T. Blake F. Blanc S. Blusk D. Bobulska V. Bocci O. Boente Garcia T. Boettcher A. Boldyrev A. Bondar N. Bondar S. Borghi M. Borisyak M. Borsato J. T. Borsuk T. J. V. Bowcock C. Bozzi M. J. Bradley S. Braun A. Brea Rodriguez M. Brodski J. Brodzicka A. Brossa Gonzalo D. Brundu E. Buchanan A. Büchler-Germann A. Buonaura C. Burr A. Bursche J. S. Butter J. Buytaert W. Byczynski S. Cadeddu H. Cai R. Calabrese L. Calero Diaz S. Cali R. Calladine M. Calvi M. Calvo Gomez A. Camboni P. Campana D. H. Campora Perez L. Capriotti A. Carbone G. Carboni R. Cardinale A. Cardini P. Carniti K. Carvalho Akiba A. Casais Vidal G. Casse M. Cattaneo G. Cavallero S. Celani R. Cenci J. Cerasoli M. G. Chapman M. Charles Ph. Charpentier G. Chatzikonstantinidis M. Chefdeville V. Chekalina C. Chen S. Chen A. Chernov S.-G. Chitic V. Chobanova M. Chrzaszcz A. Chubykin P. Ciambrone M. F. Cicala X. Cid Vidal G. Ciezarek F. Cindolo P. E. L. Clarke M. Clemencic H. V. Cliff J. Closier J. L. Cobbledick V. Coco J. A. B. Coelho J. Cogan E. Cogneras L. Cojocariu P. Collins T. Colombo A. Comerma-Montells A. Contu N. Nikhef National Institute for Subatomic Physics Amsterdam Netherlands Physik-Institut Universität Zürich Zürich Switzerland Oliver Lodge Laboratory University of Liverpool Liverpool United Kingdom Instituto Galego de Física de Altas Enerxías (IGFAE) Universidade de Santiago de Compostela Santiago de Compostela Spain H.H. Wills Physics Laboratory University of Bristol Bristol United Kingdom Université Clermont Auvergne CNRS/IN2P3 LPC Clermont-Ferrand France University of Michigan Ann Arbor USA (associated with Syracuse University Syracuse New York USA) INFN Sezione di Milano Milano Italy Los Alamos National Laboratory (LANL) Los Alamos USA INFN Laboratori Nazionali di Frascati Frascati Italy Fakultät Physik Technische Universität Dortmund Dortmund Germany European Organization for Nuclear Research (CERN) Geneva Switzerland School of Physics and Astronomy University of Glasgow Glasgow United Kingdom ICCUB Universitat de Barcelona Barcelona Spain Petersburg Nuclear Physics Institute NRC Kurchatov Institute (PNPI NRC KI) Gatchina Russia Imperial College London London United Kingdom Universidade Federal do Rio de Janeiro (UFRJ) Rio de Janeiro Brazil Université Paris-Saclay CNRS/IN2P3 IJCLab Orsay France INFN Sezione di Firenze Firenze Italy Institute of Physics Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland INFN Sezione di Ferrara Ferrara Italy Physikalisches Institut Ruprecht-Karls-Universität Heidelberg Heidelberg Germany Aix Marseille Univ CNRS/IN2P3 CPPM Marseille France Institute for High Energy Physics NRC Kurchatov Institute (IHEP NRC KI) Protvino Russia Protvino Russia Syracuse University Syracuse New York USA Yandex School of Data Analysis Moscow Russia INFN Sezione di Cagliari Monserrato Italy Department of Physics University of Warwick Coventry United Kingdom Department of Physics and Astronomy University of Manchester Manchester United Kingdom INFN Sezione di Genova Genova Italy INFN Sezione di Pisa Pi
A search for the decay KS0→μ+μ− is performed using proton-proton collision data, corresponding to an integrated luminosity of 5.6 fb−1 and collected with the LHCb experiment during 2016, 2017, and 2018 at a center... 详细信息
来源: 评论