In this work, we consider a general consistent and conservative phase-field model for the incompressible two-phase flows. In this model, not only the Cahn-Hilliard or Allen-Cahn equation can be adopted, but also the m...
详细信息
In this work, we consider a general consistent and conservative phase-field model for the incompressible two-phase flows. In this model, not only the Cahn-Hilliard or Allen-Cahn equation can be adopted, but also the mass and the momentum fluxes in the Navier-Stokes equations are reformulated such that the consistency of reduction, consistency of mass and momentum transport, and the consistency of mass conservation are satisfied. We further develop a lattice Boltzmann (LB) method, and show that through the direct Taylor expansion, the present LB method can correctly recover the consistent and conservative phase-field model. Additionally, if the divergence of the extra momentum flux is seen as a force term, the extra force in the present LB method would include another term which has not been considered in the previous LB methods. To quantitatively evaluate the incompressibility and the consistency of the mass conservation, two statistical variables are introduced in the study of the deformation of a square droplet, and the results show that the present LB method is more accurate. The layered Poiseuille flow and a droplet spreading on an ideal wall are further investigated, and the numerical results are in good agreement with the analytical solutions. Finally, the problems of the Rayleigh-Taylor instability, a single rising bubble, and the dam break with the high Reynolds numbers and/or large density ratios are studied, and it is found that the present consistent and conservative LB method is robust for such complex two-phase flows.
In this paper, we first develop a fourth-order multiple-relaxation-time lattice Boltzmann (MRT-LB) model for the one-dimensional convection-diffusion equation (CDE) with the constant velocity and diffusion coefficient...
详细信息
In this paper, we first develop a fourth-order multiple-relaxation-time lattice Boltzmann (MRT-LB) model for the one-dimensional convection-diffusion equation (CDE) with the constant velocity and diffusion coefficient, where the D1Q3 (three discrete velocities in one-dimensional space) lattice structure is used. We also perform the Chapman-Enskog analysis to recover the CDE from the MRT-LB model. Then an explicit four-level finite-difference (FLFD) scheme is derived from the developed MRT-LB model for the CDE. Through the Taylor expansion, the truncation error of the FLFD scheme is obtained, and at the diffusive scaling, the FLFD scheme can achieve the fourth-order accuracy in space. After that, we present a stability analysis and derive the same stability condition for the MRT-LB model and FLFD scheme. Finally, we perform some numerical experiments to test the MRT-LB model and FLFD scheme, and the numerical results show that they have a fourth-order convergence rate in space, which is consistent with our theoretical analysis.
In this paper, we develop a macroscopic finite-difference scheme from the mesoscopic regularized lattice Boltzmann (RLB) method to solve the Navier-Stokes equations (NSEs) and convection-diffusion equation (CDE). Unli...
详细信息
In this paper, we develop a macroscopic finite-difference scheme from the mesoscopic regularized lattice Boltzmann (RLB) method to solve the Navier-Stokes equations (NSEs) and convection-diffusion equation (CDE). Unlike the commonly used RLB method based on the evolution of a set of distribution functions, this macroscopic finite-difference scheme is constructed based on the hydrodynamic variables of NSEs (density, momentum, and strain rate tensor) or macroscopic variables of CDE (concentration and flux), and thus shares low memory requirement and high computational efficiency. Based on an accuracy analysis, it is shown that, the same as the mesoscopic RLB method, the macroscopic finite-difference scheme also has a second-order accuracy in space. In addition, we would like to point out that compared with the RLB method and its equivalent macroscopic numerical scheme, the present macroscopic finite-difference scheme is much simpler and more efficient since it is only a two-level system with macroscopic variables. Finally, we perform some simulations of several benchmark problems, and find that the numerical results are not only in agreement with analytical solutions, but also consistent with the theoretical analysis.
In this paper, we developed a coupled diffuse-interface lattice Boltzmann method (DI-LBM) to study the transport of a charged particle in the Poiseuille flow, which is governed by the Navier-Stokes equations for fluid...
详细信息
In this paper, we developed a coupled diffuse-interface lattice Boltzmann method (DI-LBM) to study the transport of a charged particle in the Poiseuille flow, which is governed by the Navier-Stokes equations for fluid field and the Poisson-Boltzmann equation for electric potential field. We first validated the present DI-LBM through some classical benchmark problems, and then investigated the effect of electric field on the lateral migration of the particle in the Poiseuille flow. The numerical results show that the electric field has a significant influence on the particle migration. When an electric field in the vertical direction is applied to the charged particle initially located above the centerline of the channel, the equilibrium position of the particle would drop suddenly as the electric field is larger than a critical value. This is caused by the wall repulsion due to lubrication, the inertial lift related to shear slip, the lift owing to particle rotation, the lift due to the curvature of the undisturbed velocity profile, and the electric force. On the other hand, when an electric field in the horizontal direction is adopted, the equilibrium position of the particle would move toward the centerline of the channel with the increase of the electric field.
An efficient third-order discrete unified gas kinetic scheme (DUGKS) is presented in this paper for simulating continuum and rarefied flows. By employing a two-stage time-stepping scheme and the high-order DUGKS flux ...
详细信息
An efficient third-order discrete unified gas kinetic scheme (DUGKS) is presented in this paper for simulating continuum and rarefied flows. By employing a two-stage time-stepping scheme and the high-order DUGKS flux reconstruction strategy, third order of accuracy in both time and space can be achieved in the present method. It is also analytically proven that the second-order DUGKS is a special case of the present method. Compared with the high-order lattice Boltzmann equation-based methods, the present method is capable to deal with the rarefied flows by adopting the Newton-Cotes quadrature to approximate the integrals of moments. Instead of being constrained by the second order (or lower order) of accuracy in the time-splitting scheme as in the conventional high-order Runge-Kutta-based kinetic methods, the present method solves the original Boltzmann equation, which overcomes the limitation in time accuracy. Typical benchmark tests are carried out for comprehensive evaluation of the present method. It is observed in the tests that the present method is advantageous over the original DUGKS in accuracy and capturing delicate flow structures. Moreover, the efficiency of the present third-order method is also shown in simulating rarefied flows.
In this work we develop an improved phase-field based lattice Boltzmann (LB) method where a hybrid Allen-Cahn equation (ACE) with a flexible weight instead of a global weight is used to suppress the numerical dispersi...
详细信息
In this work we develop an improved phase-field based lattice Boltzmann (LB) method where a hybrid Allen-Cahn equation (ACE) with a flexible weight instead of a global weight is used to suppress the numerical dispersion and eliminate the coarsening phenomenon. Then two LB models are adopted to solve the hybrid ACE and the Navier-Stokes equations, respectively. Through the Chapman-Enskog analysis, the present LB model can correctly recover the hybrid ACE, and the macroscopic order parameter used to label different phases can be calculated explicitly. Finally, the present LB method is validated by five tests, including the diagonal translation of a circular interface, two stationary bubbles with different radii, a bubble rising under the gravity, the Rayleigh-Taylor instability in two-dimensional and three-dimensional cases, and the three-dimensional Plateau-Rayleigh instability. The numerical results show that the present LB method has a superior performance in reducing the numerical dispersion and the coarsening phenomenon.
Auto-ejection of liquid is an important process in engineering applications, and is also very complicated since it involves interface moving, deforming, and jet breaking up. In this work, a theoretical velocity of men...
详细信息
Auto-ejection of liquid is an important process in engineering applications, and is also very complicated since it involves interface moving, deforming, and jet breaking up. In this work, a theoretical velocity of meniscus at nozzle exit is first derived, which can be used to analyze the critical condition for auto-ejection of liquid. Then a consistent and conservative axisymmetric lattice Boltzmann (LB) method is proposed to study the auto-ejection process of liquid jet from a nozzle. We test the LB model by conducting some simulations, and find that the numerical results agree well with the theoretical and experimental data. We further consider the effects of contraction ratio, length ratio, contact angle, and nozzle structure on the auto-ejection, and observe some distinct phenomena during the ejection process, including the deformation of meniscus, capillary necking, and droplet pinch off. Finally, the results reported in the present work may play an instructive role on the design of droplet ejectors and the understanding of jetting dynamics in microgravity environment.
In this paper we investigate some properties of equilibrium points in n-dimensional linear control systems with saturated state feedback. We provide an index formula for equilibrium points and discuss its relation to ...
详细信息
In this paper, we study the following prototypical two-species chemotaxis system with Lotka-Volterra competition and signal production: (Equation presented). We show that if (Equation presented). the associated Neuman...
详细信息
In this work, we study global existence, eventual smoothness and asymptotical behavior of positive solutions for the following two-species chemotaxis consumption model: ut = ∆u - χ1∇ · (u∇w), x ∈ Ω, t > 0, ...
详细信息
暂无评论