In this paper, we provide a new and sharper bound for the Legendre coefficients of differentiable functions and then derive a new error bound of the truncated Legendre series in the uniform norm. The key idea of proof...
Motivated by comparing the convergence behavior of Gegenbauer projections and best approximations, we study the optimal rate of convergence for Gegenbauer projections in the maximum norm. We show that the rate of conv...
详细信息
The phenomena of diffusion in multicomponent (more than two components) mixtures are universal in both science and engineering, and from the mathematical point of view, they are usually described by the Maxwell-Stefan...
详细信息
The phenomena of diffusion in multicomponent (more than two components) mixtures are universal in both science and engineering, and from the mathematical point of view, they are usually described by the Maxwell-Stefan (MS)-theory-based diffusion equations where the molar average velocity is assumed to be zero. In this paper, we propose a multiple-relaxation-time lattice Boltzmann (LB) model for the mass diffusion in multicomponent mixtures and also perform a Chapman-Enskog analysis to show that the MS continuum equations can be correctly recovered from the developed LB model. In addition, considering the fact that the MS-theory-based diffusion equations are just a diffusion type of partial differential equations, we can also adopt much simpler lattice structures to reduce the computational cost of present LB model. We then conduct some simulations to test this model and find that the results are in good agreement with the previous work. Besides, the reverse diffusion, osmotic diffusion, and diffusion barrier phenomena are also captured. Finally, compared to the kinetic-theory-based LB models for multicomponent gas diffusion, the present model does not include any complicated interpolations, and its collision process can still be implemented locally. Therefore, the advantages of single-component LB method can also be preserved in present LB model.
In this paper, we propose a lattice Boltzmann (LB) model for the generalized coupled cross-diffusion-fluid system. Through the direct Taylor expansion method, the proposed LB model can correctly recover the macroscopi...
详细信息
In this paper, we study the following critical system with fractional Laplacian:(Formula Presented) , By using the Nehari manifold, under proper conditions, we establish the existence and nonexistence of positive leas...
详细信息
In this paper, we perform a more general analysis on the discrete effects of some boundary schemes of the popular one- to three-dimensional DnQq multiple-relaxation-time lattice Boltzmann model for convection-diffusio...
详细信息
In this paper, a multiple-distribution-function lattice Boltzmann method (MDF-LBM) with multiple-relaxation-time model is proposed for incompressible Navier-Stokes equations (NSEs) which are considered as the coupled ...
详细信息
The fractional Schrödinger equation (FSE) on the real line arises in a broad range of physical settings and their numerical simulation is challenging due to the nonlocal nature and the power law decay of the solu...
详细信息
In this paper we present a new perspective on error analysis for Legendre approximations of differentiable functions. We start by introducing a sequence of Legendre-Gauss-Lobatto polynomials and prove their theoretica...
详细信息
In this paper, we consider the following fractional Laplacian system with one critical exponent and one subcritical exponent (formula presented), where (−∆)s is the fractional Laplacian, 0 2s, λ ∗−1 and 2∗ = N2−N2s i...
详细信息
暂无评论