This paper focuses on the bounded tracking control of general linear multi-agent systems(MASs), considering the effects of inevitable communication time-delays, measurement noises, and uncertain disturbances in practi...
详细信息
This paper focuses on the bounded tracking control of general linear multi-agent systems(MASs), considering the effects of inevitable communication time-delays, measurement noises, and uncertain disturbances in practical applications. Firstly, the bounded tracking control problem of uncertain MASs under multiplicative noises is transformed into the boundedness problem of stochastic differential delay equations. Then, the upper bound of agent tracking is calculated by means of linear variation, variation of constants formula and stochastic analysis theory, and sufficient conditions are given for the system to achieve the bounded tracking control.
In this paper, the events-based model predictive control (MPC) problem is studied for systems under false data injection (FDI) attacks. A time-varying event-triggered mechanism (ETM) is proposed to manage measurement ...
详细信息
In this paper, the events-based model predictive control (MPC) problem is studied for systems under false data injection (FDI) attacks. A time-varying event-triggered mechanism (ETM) is proposed to manage measurement data packet releases and a static ETM is used to reduce the influence of the FDI attacks on the controller. By using the properties of the defined robust positive invariant set, a solvable auxiliary optimization problem (OP) is proposed to design the controller. The recursive feasibility of the auxiliary OP and the input-to-state stability of the closed-loop system are guaranteed. The validity of the developed ETMs-based anti-attack MPC algorithm is shown by an example.
At present, most research on the coverage of multi-agent systems is based on Euclidean distance. This does not consider the existence of obstacles and has great limitations in the application. In this paper, a kind of...
At present, most research on the coverage of multi-agent systems is based on Euclidean distance. This does not consider the existence of obstacles and has great limitations in the application. In this paper, a kind of coverage control problem based on high-order geodesic Voronoi partition is practically investigated. It allows multiple agents to monitor an area with obstacles to achieve the monitoring of the overall environment. As a result, the geodesic distance is introduced as a metric form. Based on the geodesic distance, point-by-point scanning on the layer is taken to achieve high-order Voronoi diagram division. The coverage algorithm can be implemented in a distributed manner through the exchange of location information with each other, and the Lloyd algorithm is added to realize the movement of the sensor toward the optimal position.
High precision modeling in industrial systems is difficult and costly. Model-free intelligentcontrol methods, represented by reinforcement learning, have been applied in industrial systems broadly. The hard evaluated...
详细信息
High precision modeling in industrial systems is difficult and costly. Model-free intelligentcontrol methods, represented by reinforcement learning, have been applied in industrial systems broadly. The hard evaluated of production states and the low value density of processing data causes sparse rewards, which lead to an insufficient performance of reinforcement learning. To overcome the difficulty of reinforcement learning in sparse reward scenes, a reinforcement learning method with reward shaping and hybrid exploration is proposed. By perfecting the rewards distribution in the state space of environment, the reward shaping can make the state-value estimation of reinforcement learning more accurate. By improving the rewards distribution in time dimension, the hybrid exploration can make the iteration of reinforcement learning more efficient and more stable. Finally, the effectiveness of the proposed method is verified by simulations.
A high-reliability constant current to constant voltage power supply system has the advantages of small volume of switching power supply, high power density, high efficiency was proposed. This paper use two controller...
A high-reliability constant current to constant voltage power supply system has the advantages of small volume of switching power supply, high power density, high efficiency was proposed. This paper use two controllers to control the shunt regulator(SR) circuit and single-end flyback converter part, and separate the two parts for small signal modeling and give the parameters to stabilize the closed loop. The state space average modeling idea was used to solve the state equations for the modes of the converters in a switching cycle. In order to ensure the stability of cascade system, this paper collaborative optimization of hardware filter parameters and the appropriate PI parameter design. The experimentals verify the correctness of our theory, and the system has good stability under closed-loop conditions.
This paper explores the finite-time synchronization of a class of discrete-time nonlinear singularly perturbed complex networks using a dynamic event-triggered mechanism (DETM). The DETM is designed to optimize packet...
This paper explores the finite-time synchronization of a class of discrete-time nonlinear singularly perturbed complex networks using a dynamic event-triggered mechanism (DETM). The DETM is designed to optimize packet transmission, aiming to conserve network resources. By constructing a Lyapunov function considering singularly perturbed parameters (SPPs) and DETM information, a sufficient condition for the dynamics of synchronization error system to be finite-time stable is given. The parameters of the synchronization controller can be determined by solving a set of matrix inequalities. The effectiveness of the proposed controller is demonstrated through a numerical example.
With the rapid development of sequencing technology, researchers can obtain a large number of single cell RNA sequencing (scRNA-seq) data which is useful for analysis of cell fate decision and growth process at indivi...
详细信息
Effective identification of faults or abnormal conditions can help operators make corrective decisions and plan equipment maintenance. Sequence matching and cluster analysis are important methods to distinguish differ...
Effective identification of faults or abnormal conditions can help operators make corrective decisions and plan equipment maintenance. Sequence matching and cluster analysis are important methods to distinguish different faults. Most existing sequence matching methods mainly focus on alarm event sequences, which reflect the amplitude change characteristics of process data. However, due to the complexity of the equipment and the coupling between variables, alarm event sequences caused by different faults may still assemble each other in a certain extent, which makes it difficult to distinguish faults based on alarms only. To solve this problem, this paper proposes a sequence similarity analysis method combining both alarm and trend events. A qualitative trend representation method is proposed to extract trend changes as trend events. A feature event fusion method is proposed to generate a hybrid sequence to distinguish different fault sequences. The proposed method is evaluated based on data generated by the Tennessee Eastman process model.
A fault diagnosis method based on Discrete Hidden Markov Models is proposed in this paper to identify the fault causing alarm flood sequences. The proposed method consists of the following steps: First, the alarm floo...
A fault diagnosis method based on Discrete Hidden Markov Models is proposed in this paper to identify the fault causing alarm flood sequences. The proposed method consists of the following steps: First, the alarm flood data is pre-processed to ensure that all sequences are of uniform length, and a separate Discrete Hidden Markov model is trained for each fault to capture the relationship between the fault and the alarm sequences. Second, given an observation sequence, the log-likelihood probability values under different Discrete Hidden Markov models are calculated and the maximum probability is selected to determine the type of corresponding fault. Last, the feasibility of the proposed method is verified by simulation data obtained from a public industrial model. The results show that the method can effectively identify the faults that trigger alarm floods.
Due to the significant time lag and under-regulation, predicting the blast furnace gas generation and formulating its scheduling strategy is complex. This paper proposes a blast furnace gas generation prediction metho...
详细信息
Due to the significant time lag and under-regulation, predicting the blast furnace gas generation and formulating its scheduling strategy is complex. This paper proposes a blast furnace gas generation prediction method based on time series feature extraction and designs a blast furnace gas scheduling strategy based on the prediction results. Firstly, Pearson correlation analysis is used to identify the parameters that have a significant correlation with the blast furnace gas generation, and the selected parameters are decomposed into several intrinsic mode components with different frequency characteristics using the complete ensemble empirical mode decomposition; Then, the principal component analysis method is used to extract the principal components of several intrinsic modal components, and these principal components are employed as the inputs of long short-term memory neural network to predict the blast furnace gas generation; Finally, according to the prediction results designs the scheduling strategy of blast furnace gas. The experiment and contrast experiments are carried out with the industrial field data, and experimental results illustrate that the proposed method is correct and effective.
暂无评论