咨询与建议

限定检索结果

文献类型

  • 285 篇 会议
  • 112 篇 期刊文献

馆藏范围

  • 397 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 270 篇 工学
    • 196 篇 计算机科学与技术...
    • 179 篇 软件工程
    • 71 篇 信息与通信工程
    • 22 篇 生物工程
    • 20 篇 机械工程
    • 17 篇 电气工程
    • 17 篇 控制科学与工程
    • 15 篇 电子科学与技术(可...
    • 12 篇 光学工程
    • 10 篇 化学工程与技术
    • 9 篇 生物医学工程(可授...
    • 3 篇 仪器科学与技术
    • 3 篇 动力工程及工程热...
    • 2 篇 材料科学与工程(可...
    • 2 篇 土木工程
  • 169 篇 理学
    • 111 篇 物理学
    • 69 篇 数学
    • 39 篇 统计学(可授理学、...
    • 26 篇 生物学
    • 20 篇 系统科学
    • 11 篇 化学
  • 38 篇 管理学
    • 27 篇 图书情报与档案管...
    • 9 篇 管理科学与工程(可...
    • 4 篇 工商管理
    • 2 篇 公共管理
  • 6 篇 法学
    • 5 篇 社会学
  • 5 篇 医学
    • 5 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 公共卫生与预防医...
  • 2 篇 文学
    • 2 篇 外国语言文学
  • 1 篇 经济学
  • 1 篇 教育学
  • 1 篇 农学
  • 1 篇 艺术学

主题

  • 66 篇 speech recogniti...
  • 40 篇 training
  • 38 篇 hidden markov mo...
  • 29 篇 neural machine t...
  • 25 篇 machine translat...
  • 20 篇 decoding
  • 19 篇 handwriting reco...
  • 18 篇 computer aided l...
  • 16 篇 recurrent neural...
  • 15 篇 feature extracti...
  • 15 篇 transducers
  • 14 篇 vocabulary
  • 12 篇 databases
  • 12 篇 error analysis
  • 11 篇 speech
  • 10 篇 pattern recognit...
  • 10 篇 humans
  • 9 篇 training data
  • 9 篇 optimization
  • 9 篇 context

机构

  • 52 篇 human language t...
  • 40 篇 human language t...
  • 37 篇 apptek gmbh aach...
  • 32 篇 human language t...
  • 31 篇 human language t...
  • 23 篇 apptek gmbh aach...
  • 20 篇 human language t...
  • 16 篇 human language t...
  • 13 篇 human language t...
  • 12 篇 pattern recognit...
  • 10 篇 human language t...
  • 9 篇 spoken language ...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 6 篇 pattern recognit...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 5 篇 a2ia sa

作者

  • 210 篇 ney hermann
  • 80 篇 hermann ney
  • 61 篇 schlüter ralf
  • 22 篇 ralf schluter
  • 21 篇 ralf schlüter
  • 20 篇 casacuberta fran...
  • 19 篇 wuebker joern
  • 18 篇 zeyer albert
  • 17 篇 zhou wei
  • 16 篇 gao yingbo
  • 14 篇 kim yunsu
  • 14 篇 herold christian
  • 13 篇 mansour saab
  • 13 篇 zeineldeen moham...
  • 13 篇 patrick doetsch
  • 12 篇 peris álvaro
  • 12 篇 peter jan-thorst...
  • 12 篇 michel wilfried
  • 12 篇 peitz stephan
  • 12 篇 huck matthias

语言

  • 395 篇 英文
  • 1 篇 西班牙文
  • 1 篇 中文
检索条件"机构=Human Language Technology And Pattern Recognition Group"
397 条 记 录,以下是171-180 订阅
排序:
RADMM: RECURRENT ADAPTIVE MIXTURE MODEL WITH APPLICATIONS TO DOMAIN ROBUST language MODELING
RADMM: RECURRENT ADAPTIVE MIXTURE MODEL WITH APPLICATIONS TO...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Kazuki Irie Shankar Kumar Michael Nirschl Hank Liao Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University D-52056 Aachen Germany Google Inc. New York NY 10011 USA
We present a new architecture and a training strategy for an adaptive mixture of experts with applications to domain robust language modeling. The proposed model is designed to benefit from the scenario where the trai... 详细信息
来源: 评论
MLLP-UPV and RWTH Aachen Spanish ASR Systems for the IberSpeech-RTVE 2018 Speech-to-Text Transcription Challenge  4
MLLP-UPV and RWTH Aachen Spanish ASR Systems for the IberSpe...
收藏 引用
4th International Conference on Advances in Speech and language Technologies for Iberian languages, IberSPEECH 2018
作者: Jorge, Javier Martínez-Villaronga, Adrià Golik, Pavel Giménez, Adrià Silvestre-Cerdà, Joan Albert Doetsch, Patrick Císcar, Vicent Andreu Ney, Hermann Juan, Alfons Sanchis, Albert Departament de Sistemes Informàtics i Computació Universitat Politècnica de València Spain Human Language Technology and Pattern Recognition RWTH Aachen University Germany Escola Tècnica Superior d'Enginyeria Informàtica Universitat Politècnica de València Spain
This paper describes the Automatic Speech recognition systems built by the MLLP research group of Universitat Politècnica de València and the HLTPR research group of RWTH Aachen for the IberSpeech-RTVE 2018 ... 详细信息
来源: 评论
Improved training of end-to-end attention models for speech recognition
arXiv
收藏 引用
arXiv 2018年
作者: Zeyer, Albert Irie, Kazuki Schlüter, Ralf Ney, Hermann Computer Science Department Rwth Aachen University Human Language Technology and Pattern Recognition Aachen52062 Germany AppTek United States Nnaisense Switzerland
Sequence-to-sequence attention-based models on subword units allow simple open-vocabulary end-to-end speech recognition. In this work, we show that such models can achieve competitive results on the Switchboard 300h a... 详细信息
来源: 评论
Returnn: The RWTH extensible training framework for universal recurrent neural networks
Returnn: The RWTH extensible training framework for universa...
收藏 引用
2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017
作者: Doetsch, Patrick Zeyer, Albert Voigtlaender, Paul Kulikov, Ilia Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52062 Germany
In this work we release our extensible and easily configurable neural network training software. It provides a rich set of functional layers with a particular focus on efficient training of recurrent neural network to... 详细信息
来源: 评论
NMT-Keras: A very flexible toolkit with a focus on interactive NMT and online learning
arXiv
收藏 引用
arXiv 2018年
作者: Peris, Álvaro Casacuberta, Francisco Pattern Recognition and Human Language Technology Research Center Universitat Politècnica de València Camino de Vera s/n Valencia46022 Spain
We present NMT-Keras, a flexible toolkit for training deep learning models, which puts a particularemphasis on the development of advanced applications of neural machine translation systems, such as interactive-predic... 详细信息
来源: 评论
Online learning for effort reduction in interactive neural machine translation
arXiv
收藏 引用
arXiv 2018年
作者: Peris, Álvaro Casacuberta, Francisco Pattern Recognition and Human Language Technology Research Center Universitat Politècnica de València Camino de Vera s/n Valencia46022 Spain
Neural machine translation systems require large amounts of training data and resources. Even with this, the quality of the translations may be insufficient for some users or domains. In such cases, the output of the ... 详细信息
来源: 评论
Adapting neural machine translation with parallel synthetic data  2
Adapting neural machine translation with parallel synthetic ...
收藏 引用
2nd Conference on Machine Translation, WMT 2017
作者: Chinea-Ríos, Mara Peris, Álvaro Casacuberta, Francisco Pattern Recognition and Human Language Technology Research Center Universitat Politècnica de València València Spain
Recent works have shown that the usage of a synthetic parallel corpus can be effectively exploited by a neural machine translation system. In this paper, we propose a new method for adapting a general neural machine t... 详细信息
来源: 评论
How much does Tokenization affect neural machine translation?
arXiv
收藏 引用
arXiv 2018年
作者: Domingo, Miguel García-Martínez, Mercedes Helle, Alexandre Casacuberta, Francisco Herranz, Manuel Pattern Recognition and Human Language Technology Research Center Universitat Politècnica de València Camino de Vera s/n Valencia46022 Spain Pangeanic / B.I Europa PangeaMT Technologies Division Valencia Spain
Tokenization or segmentation is a wide concept that covers simple processes such as separating punctuation from words, or more sophisticated processes such as applying morphological knowledge. Neural Machine Translati... 详细信息
来源: 评论
Local system voting feature for machine translation system combination
arXiv
收藏 引用
arXiv 2017年
作者: Freitag, Markus Peter, Jan-Thorsten Peitz, Stephan Feng, Minwei Ney, Hermann Human Language Technology Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
In this paper, we enhance the traditional confusion network system combination approach with an additional model trained by a neural network. This work is motivated by the fact that the commonly used binary system vot... 详细信息
来源: 评论
Investigations on byte-level convolutional neural networks for language modeling in low resource speech recognition
Investigations on byte-level convolutional neural networks f...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Kazuki Irie Pavel Golik Ralf Schluter Hermann Ney Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Germany
In this paper, we present an investigation on technical details of the byte-level convolutional layer which replaces the conventional linear word projection layer in the neural language model. In particular, we discus... 详细信息
来源: 评论