咨询与建议

限定检索结果

文献类型

  • 285 篇 会议
  • 112 篇 期刊文献

馆藏范围

  • 397 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 270 篇 工学
    • 196 篇 计算机科学与技术...
    • 179 篇 软件工程
    • 71 篇 信息与通信工程
    • 22 篇 生物工程
    • 20 篇 机械工程
    • 17 篇 电气工程
    • 17 篇 控制科学与工程
    • 15 篇 电子科学与技术(可...
    • 12 篇 光学工程
    • 10 篇 化学工程与技术
    • 9 篇 生物医学工程(可授...
    • 3 篇 仪器科学与技术
    • 3 篇 动力工程及工程热...
    • 2 篇 材料科学与工程(可...
    • 2 篇 土木工程
  • 169 篇 理学
    • 111 篇 物理学
    • 69 篇 数学
    • 39 篇 统计学(可授理学、...
    • 26 篇 生物学
    • 20 篇 系统科学
    • 11 篇 化学
  • 38 篇 管理学
    • 27 篇 图书情报与档案管...
    • 9 篇 管理科学与工程(可...
    • 4 篇 工商管理
    • 2 篇 公共管理
  • 6 篇 法学
    • 5 篇 社会学
  • 5 篇 医学
    • 5 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 公共卫生与预防医...
  • 2 篇 文学
    • 2 篇 外国语言文学
  • 1 篇 经济学
  • 1 篇 教育学
  • 1 篇 农学
  • 1 篇 艺术学

主题

  • 66 篇 speech recogniti...
  • 40 篇 training
  • 38 篇 hidden markov mo...
  • 29 篇 neural machine t...
  • 25 篇 machine translat...
  • 20 篇 decoding
  • 19 篇 handwriting reco...
  • 18 篇 computer aided l...
  • 16 篇 recurrent neural...
  • 15 篇 feature extracti...
  • 15 篇 transducers
  • 14 篇 vocabulary
  • 12 篇 databases
  • 12 篇 error analysis
  • 11 篇 speech
  • 10 篇 pattern recognit...
  • 10 篇 humans
  • 9 篇 training data
  • 9 篇 optimization
  • 9 篇 context

机构

  • 52 篇 human language t...
  • 40 篇 human language t...
  • 37 篇 apptek gmbh aach...
  • 32 篇 human language t...
  • 31 篇 human language t...
  • 23 篇 apptek gmbh aach...
  • 20 篇 human language t...
  • 16 篇 human language t...
  • 13 篇 human language t...
  • 12 篇 pattern recognit...
  • 10 篇 human language t...
  • 9 篇 spoken language ...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 6 篇 pattern recognit...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 5 篇 a2ia sa

作者

  • 210 篇 ney hermann
  • 80 篇 hermann ney
  • 61 篇 schlüter ralf
  • 22 篇 ralf schluter
  • 21 篇 ralf schlüter
  • 20 篇 casacuberta fran...
  • 19 篇 wuebker joern
  • 18 篇 zeyer albert
  • 17 篇 zhou wei
  • 16 篇 gao yingbo
  • 14 篇 kim yunsu
  • 14 篇 herold christian
  • 13 篇 mansour saab
  • 13 篇 zeineldeen moham...
  • 13 篇 patrick doetsch
  • 12 篇 peris álvaro
  • 12 篇 peter jan-thorst...
  • 12 篇 michel wilfried
  • 12 篇 peitz stephan
  • 12 篇 huck matthias

语言

  • 395 篇 英文
  • 1 篇 西班牙文
  • 1 篇 中文
检索条件"机构=Human Language Technology And Pattern Recognition Group"
397 条 记 录,以下是231-240 订阅
排序:
uniblock: Scoring and Filtering Corpus with Unicode Block Information
arXiv
收藏 引用
arXiv 2019年
作者: Gao, Yingbo Wang, Weiyue Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
The preprocessing pipelines in Natural language Processing usually involve a step of removing sentences consisted of illegal characters. The definition of illegal characters and the specific removal strategy depend on... 详细信息
来源: 评论
FEATURE COMBINATION AND STACKING OF RECURRENT AND NON-RECURRENT NEURAL NETWORKS FOR LVCSR
FEATURE COMBINATION AND STACKING OF RECURRENT AND NON-RECURR...
收藏 引用
IEEE International Conference on Acoustics, Speech, and Signal Processing
作者: Christian Plahl Michael Kozielski Ralf Schluter Hermann Ney Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University
This paper investigates the combination of different short-term features and the combination of recurrent and non-recurrent neural networks (NNs) on a Spanish speech recognition task. Several methods exist to combine ... 详细信息
来源: 评论
Direct construction of compact context-dependency transducers from data
Direct construction of compact context-dependency transducer...
收藏 引用
作者: Rybach, David Riley, Michael Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Germany Google Inc. 76 Ninth Avenue New York NY United States
This paper describes a new method for building compact context-dependency transducers for finite-state transducer-based ASR decoders. Instead of the conventional phonetic decision-tree growing followed by FST compilat... 详细信息
来源: 评论
The RWTH Aachen Machine Translation System for WMT 2012  12
The RWTH Aachen Machine Translation System for WMT 2012
收藏 引用
Workshop on Statistical Machine Translation
作者: Matthias Huck Stephan Peitz Markus Freitag Malte Nuhn Hermann Ney Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University D-52056 Aachen Germany
This paper describes the statistical machine translation (SMT) systems developed at RWTH Aachen University for the translation task of the NAACL 2012 Seventh Workshop on Statistical Machine Translation (WMT 2012). We ... 详细信息
来源: 评论
Improving language Model Integration for Neural Machine Translation
arXiv
收藏 引用
arXiv 2023年
作者: Herold, Christian Gao, Yingbo Zeineldeen, Mohammad Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
The integration of language models for neural machine translation has been extensively studied in the past. It has been shown that an external language model, trained on additional target-side monolingual data, can he... 详细信息
来源: 评论
On Search Strategies for Document-Level Neural Machine Translation
arXiv
收藏 引用
arXiv 2023年
作者: Herold, Christian Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
Compared to sentence-level systems, document-level neural machine translation (NMT) models produce a more consistent output across a document and are able to better resolve ambiguities within the input. There are many... 详细信息
来源: 评论
Investigation on data adaptation techniques for neural named entity recognition
arXiv
收藏 引用
arXiv 2021年
作者: Tokarchuk, Evgeniia Thulke, David Wang, Weiyue Dugast, Christian Ney, Hermann Informatics Institute University of Amsterdam Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University
Data processing is an important step in various natural language processing tasks. As the commonly used datasets in named entity recognition contain only a limited number of samples, it is important to obtain addition... 详细信息
来源: 评论
Is Encoder-Decoder Redundant for Neural Machine Translation?
arXiv
收藏 引用
arXiv 2022年
作者: Gao, Yingbo Herold, Christian Yang, Zijian Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
Encoder-decoder architecture is widely adopted for sequence-to-sequence modeling tasks. For machine translation, despite the evolution from long short-term memory networks to Transformer networks, plus the introductio... 详细信息
来源: 评论
Document-Level language Models for Machine Translation
arXiv
收藏 引用
arXiv 2023年
作者: Petrick, Frithjof Herold, Christian Petrushkov, Pavel Khadivi, Shahram Ney, Hermann eBay Inc. Aachen Germany Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen Germany
Despite the known limitations, most machine translation systems today still operate on the sentence-level. One reason for this is, that most parallel training data is only sentence-level aligned, without document-leve... 详细信息
来源: 评论
Improving Long Context Document-Level Machine Translation
arXiv
收藏 引用
arXiv 2023年
作者: Herold, Christian Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
Document-level context for neural machine translation (NMT) is crucial to improve the translation consistency and cohesion, the translation of ambiguous inputs, as well as several other linguistic phenomena. Many work... 详细信息
来源: 评论