咨询与建议

限定检索结果

文献类型

  • 285 篇 会议
  • 113 篇 期刊文献

馆藏范围

  • 398 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 271 篇 工学
    • 196 篇 计算机科学与技术...
    • 179 篇 软件工程
    • 71 篇 信息与通信工程
    • 22 篇 生物工程
    • 20 篇 机械工程
    • 17 篇 电气工程
    • 17 篇 控制科学与工程
    • 15 篇 电子科学与技术(可...
    • 12 篇 光学工程
    • 10 篇 化学工程与技术
    • 9 篇 生物医学工程(可授...
    • 3 篇 仪器科学与技术
    • 3 篇 动力工程及工程热...
    • 2 篇 材料科学与工程(可...
    • 2 篇 土木工程
  • 169 篇 理学
    • 111 篇 物理学
    • 69 篇 数学
    • 39 篇 统计学(可授理学、...
    • 26 篇 生物学
    • 20 篇 系统科学
    • 11 篇 化学
  • 39 篇 管理学
    • 28 篇 图书情报与档案管...
    • 10 篇 管理科学与工程(可...
    • 4 篇 工商管理
    • 2 篇 公共管理
  • 6 篇 法学
    • 5 篇 社会学
  • 5 篇 医学
    • 5 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 公共卫生与预防医...
  • 2 篇 文学
    • 2 篇 外国语言文学
  • 1 篇 经济学
  • 1 篇 教育学
  • 1 篇 农学
  • 1 篇 艺术学

主题

  • 66 篇 speech recogniti...
  • 40 篇 training
  • 38 篇 hidden markov mo...
  • 29 篇 neural machine t...
  • 25 篇 machine translat...
  • 20 篇 decoding
  • 19 篇 handwriting reco...
  • 18 篇 computer aided l...
  • 16 篇 recurrent neural...
  • 15 篇 feature extracti...
  • 15 篇 transducers
  • 14 篇 vocabulary
  • 12 篇 databases
  • 12 篇 error analysis
  • 11 篇 speech
  • 10 篇 pattern recognit...
  • 10 篇 humans
  • 9 篇 training data
  • 9 篇 optimization
  • 9 篇 context

机构

  • 52 篇 human language t...
  • 40 篇 human language t...
  • 37 篇 apptek gmbh aach...
  • 32 篇 human language t...
  • 31 篇 human language t...
  • 23 篇 apptek gmbh aach...
  • 20 篇 human language t...
  • 16 篇 human language t...
  • 13 篇 human language t...
  • 12 篇 pattern recognit...
  • 10 篇 human language t...
  • 9 篇 spoken language ...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 6 篇 pattern recognit...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 5 篇 a2ia sa

作者

  • 210 篇 ney hermann
  • 80 篇 hermann ney
  • 61 篇 schlüter ralf
  • 22 篇 ralf schluter
  • 21 篇 ralf schlüter
  • 20 篇 casacuberta fran...
  • 19 篇 wuebker joern
  • 18 篇 zeyer albert
  • 17 篇 zhou wei
  • 16 篇 gao yingbo
  • 14 篇 kim yunsu
  • 14 篇 herold christian
  • 13 篇 mansour saab
  • 13 篇 zeineldeen moham...
  • 13 篇 patrick doetsch
  • 12 篇 peris álvaro
  • 12 篇 peter jan-thorst...
  • 12 篇 michel wilfried
  • 12 篇 peitz stephan
  • 12 篇 huck matthias

语言

  • 396 篇 英文
  • 1 篇 西班牙文
  • 1 篇 中文
检索条件"机构=Human Language Technology And Pattern Recognition Group"
398 条 记 录,以下是251-260 订阅
排序:
Improvement of Context Dependent Modeling for Arabic Handwriting recognition
Improvement of Context Dependent Modeling for Arabic Handwri...
收藏 引用
International Workshop on Frontiers in Handwriting recognition
作者: Mahdi Hamdani Patrick Doetsch Hermann Ney Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
This paper proposes the improvement of context dependent modeling for Arabic handwriting recognition. Since the number of parameters in context dependent models is huge, CART trees are used for state tying. This work ... 详细信息
来源: 评论
A comparative analysis of dynamic network decoding
A comparative analysis of dynamic network decoding
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: David Rybach Ralf Schlüter Hermann Ney Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
The use of statically compiled search networks for ASR systems using huge vocabularies and complex language models often becomes challenging in terms of memory requirements. Dynamic network decoders introduce addition... 详细信息
来源: 评论
Powerful extensions to CRFS for grapheme to phoneme conversion
Powerful extensions to CRFS for grapheme to phoneme conversi...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Stefan Hahn Patrick Lehnen Hermann Ney Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
Conditional Random Fields (CRFs) have proven to per form well on natural language processing tasks like name transliteration, concept tagging or grapheme-to-phoneme (g2p) conversion. The aim of this paper is to propos... 详细信息
来源: 评论
Efficient Utilization of Large Pre-Trained Models for Low Resource ASR
Efficient Utilization of Large Pre-Trained Models for Low Re...
收藏 引用
Acoustics, Speech, and Signal Processing Workshops (ICASSPW), IEEE International Conference on
作者: Peter Vieting Christoph Lüscher Julian Dierkes Ralf Schlüter Hermann Ney Computer Science Department Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen Germany AppTek GmbH Aachen Germany
Unsupervised representation learning has recently helped automatic speech recognition (ASR) to tackle tasks with limited labeled data. Following this, hardware limitations and applications give rise to the question ho...
来源: 评论
Comparison and combination of different CRBE based MLP features for LVCSR
Comparison and combination of different CRBE based MLP featu...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Zoltán Tüske Ralf Schlüter Hermann Ney Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
Multi Layer Perceptron (MLP) features extracted from different types of critical band energies (CRBE) - derived from MFCC, GT, and PLP pipeline - are compared on French broadcast news and conversational speech recogni... 详细信息
来源: 评论
A CRITICAL EVALUATION OF STOCHASTIC ALGORITHMS FOR CONVEX OPTIMIZATION
A CRITICAL EVALUATION OF STOCHASTIC ALGORITHMS FOR CONVEX OP...
收藏 引用
IEEE International Conference on Acoustics, Speech, and Signal Processing
作者: Simon Wiesler Alexander Richard Ralf Schluter Hermann Ney Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
Log-linear models find a wide range of applications in pattern recognition. The training of log-linear models is a convex optimization problem. In this work, we compare the performance of stochastic and batch optimiza... 详细信息
来源: 评论
Investigations on the use of morpheme level features in language Models for Arabic LVCSR
Investigations on the use of morpheme level features in Lang...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Amr El-Desoky Mousa Ralf Schlüter Hermann Ney Human Language Technology and Pattern Recognition-Computer Science Department RWTH Aachen University Aachen Germany
A major challenge for Arabic Large Vocabulary Continuous Speech recognition (LVCSR) is the rich morphology of Arabic, which leads to high Out-of-vocabulary (OOV) rates, and poor language Model (LM) probabilities. In s... 详细信息
来源: 评论
Hierarchical hybrid MLP/HMM or rather MLP features for a discriminatively trained Gaussian HMM: A comparison for offline handwriting recognition
Hierarchical hybrid MLP/HMM or rather MLP features for a dis...
收藏 引用
IEEE International Conference on Image Processing
作者: Philippe Dreuw Patrick Doetsch Christian Plahl Hermann Ney Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
We use neural network based features extracted by a hierarchical multilayer-perceptron (MLP) network either in a hybrid MLP/HMM approach or to discriminatively retrain a Gaussian hidden Markov model (GHMM) system in a... 详细信息
来源: 评论
EM-style optimization of hidden conditional random fields for grapheme-to-phoneme conversion
EM-style optimization of hidden conditional random fields fo...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Georg Heigold Stefan Hahn Patrick Lehnen Hermann Ney Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
We have recently proposed an EM-style algorithm to optimize log-linear models with hidden variables. In this paper, we use this algorithm to optimize a hidden conditional random field, i.e., a conditional random field... 详细信息
来源: 评论
COMPARISON OF FEEDFORWARD AND RECURRENT NEURAL NETWORK language MODELS
COMPARISON OF FEEDFORWARD AND RECURRENT NEURAL NETWORK LANGU...
收藏 引用
IEEE International Conference on Acoustics, Speech, and Signal Processing
作者: M. Sundermeyer I. Oparin J.-L. Gauvain B. Freiberg R. Schluter H. Ney Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany Spoken Language Processing Group LIMSI CNRS Paris France
Research on language modeling for speech recognition has increasingly focused on the application of neural networks. Two competing concepts have been developed: On the one hand, feedforward neural networks representin... 详细信息
来源: 评论