咨询与建议

限定检索结果

文献类型

  • 285 篇 会议
  • 112 篇 期刊文献

馆藏范围

  • 397 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 270 篇 工学
    • 196 篇 计算机科学与技术...
    • 179 篇 软件工程
    • 71 篇 信息与通信工程
    • 22 篇 生物工程
    • 20 篇 机械工程
    • 17 篇 电气工程
    • 17 篇 控制科学与工程
    • 15 篇 电子科学与技术(可...
    • 12 篇 光学工程
    • 10 篇 化学工程与技术
    • 9 篇 生物医学工程(可授...
    • 3 篇 仪器科学与技术
    • 3 篇 动力工程及工程热...
    • 2 篇 材料科学与工程(可...
    • 2 篇 土木工程
  • 169 篇 理学
    • 111 篇 物理学
    • 69 篇 数学
    • 39 篇 统计学(可授理学、...
    • 26 篇 生物学
    • 20 篇 系统科学
    • 11 篇 化学
  • 38 篇 管理学
    • 27 篇 图书情报与档案管...
    • 9 篇 管理科学与工程(可...
    • 4 篇 工商管理
    • 2 篇 公共管理
  • 6 篇 法学
    • 5 篇 社会学
  • 5 篇 医学
    • 5 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 公共卫生与预防医...
  • 2 篇 文学
    • 2 篇 外国语言文学
  • 1 篇 经济学
  • 1 篇 教育学
  • 1 篇 农学
  • 1 篇 艺术学

主题

  • 66 篇 speech recogniti...
  • 40 篇 training
  • 38 篇 hidden markov mo...
  • 29 篇 neural machine t...
  • 25 篇 machine translat...
  • 20 篇 decoding
  • 19 篇 handwriting reco...
  • 18 篇 computer aided l...
  • 16 篇 recurrent neural...
  • 15 篇 feature extracti...
  • 15 篇 transducers
  • 14 篇 vocabulary
  • 12 篇 databases
  • 12 篇 error analysis
  • 11 篇 speech
  • 10 篇 pattern recognit...
  • 10 篇 humans
  • 9 篇 training data
  • 9 篇 optimization
  • 9 篇 context

机构

  • 52 篇 human language t...
  • 40 篇 human language t...
  • 37 篇 apptek gmbh aach...
  • 32 篇 human language t...
  • 31 篇 human language t...
  • 23 篇 apptek gmbh aach...
  • 20 篇 human language t...
  • 16 篇 human language t...
  • 13 篇 human language t...
  • 12 篇 pattern recognit...
  • 10 篇 human language t...
  • 9 篇 spoken language ...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 6 篇 pattern recognit...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 5 篇 a2ia sa

作者

  • 210 篇 ney hermann
  • 80 篇 hermann ney
  • 61 篇 schlüter ralf
  • 22 篇 ralf schluter
  • 21 篇 ralf schlüter
  • 20 篇 casacuberta fran...
  • 19 篇 wuebker joern
  • 18 篇 zeyer albert
  • 17 篇 zhou wei
  • 16 篇 gao yingbo
  • 14 篇 kim yunsu
  • 14 篇 herold christian
  • 13 篇 mansour saab
  • 13 篇 zeineldeen moham...
  • 13 篇 patrick doetsch
  • 12 篇 peris álvaro
  • 12 篇 peter jan-thorst...
  • 12 篇 michel wilfried
  • 12 篇 peitz stephan
  • 12 篇 huck matthias

语言

  • 395 篇 英文
  • 1 篇 西班牙文
  • 1 篇 中文
检索条件"机构=Human Language Technology And Pattern Recognition Group"
397 条 记 录,以下是61-70 订阅
排序:
Comparing the Benefit of Synthetic Training Data for Various Automatic Speech recognition Architectures
Comparing the Benefit of Synthetic Training Data for Various...
收藏 引用
IEEE Workshop on Automatic Speech recognition and Understanding
作者: Nick Rossenbach Mohammad Zeineldeen Benedikt Hilmes Ralf Schlüter Hermann Ney Human Language Technology and Pattern Recognition RWTH Aachen University Aachen Germany AppTek GmbH Aachen Germany
Recent publications on automatic-speech-recognition (ASR) have a strong focus on attention encoder-decoder (AED) architectures which tend to suffer from over-fitting in low resource scenarios. One solution to tackle t... 详细信息
来源: 评论
On architectures and training for raw waveform feature extraction in ASR
arXiv
收藏 引用
arXiv 2021年
作者: Vieting, Peter Lüscher, Christoph Michel, Wilfried Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
With the success of neural network based modeling in automatic speech recognition (ASR), many studies investigated acoustic modeling and learning of feature extractors directly based on the raw waveform. Recently, one... 详细信息
来源: 评论
On sampling-based training criteria for neural language modeling
arXiv
收藏 引用
arXiv 2021年
作者: Gao, Yingbo Thulke, David Gerstenberger, Alexander Tran, Khoa Viet Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department Rwth Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
As the vocabulary size of modern word-based language models becomes ever larger, many sampling-based training criteria are proposed and investigated. The essence of these sampling methods is that the softmax-related t... 详细信息
来源: 评论
Context-dependent acoustic modeling without explicit phone clustering
arXiv
收藏 引用
arXiv 2020年
作者: Raissi, Tina Beck, Eugen Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Group RWTH Aachen University
Phoneme-based acoustic modeling of large vocabulary automatic speech recognition takes advantage of phoneme context. The large number of context-dependent (CD) phonemes and their highly varying statistics require tyin... 详细信息
来源: 评论
Self-Normalized Importance Sampling for Neural language Modeling
arXiv
收藏 引用
arXiv 2021年
作者: Yang, Zijian Gao, Yingbo Gerstenberger, Alexander Jiang, Jintao Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
To mitigate the problem of having to traverse over the full vocabulary in the softmax normalization of a neural language model, sampling-based training criteria are proposed and investigated in the context of large vo... 详细信息
来源: 评论
A study of latent monotonic attention variants
arXiv
收藏 引用
arXiv 2021年
作者: Zeyer, Albert Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany AppTek GmbH Aachen Germany
End-to-end models reach state-of-the-art performance for speech recognition, but global soft attention is not monotonic, which might lead to convergence problems, to instability, to bad generalisation, cannot be used ... 详细信息
来源: 评论
Why does CTC result in peaky behavior?
arXiv
收藏 引用
arXiv 2021年
作者: Zeyer, Albert Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany AppTek GmbH Aachen Germany
The peaky behavior of CTC models is well known experimentally. However, an understanding about why peaky behavior occurs is missing, and whether this is a good property. We provide a formal analysis of the peaky behav... 详细信息
来源: 评论
When and Why is Unsupervised Neural Machine Translation Useless?
arXiv
收藏 引用
arXiv 2020年
作者: Kim, Yunsu Graça, Miguel Ney, Hermann Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen Germany
This paper studies the practicality of the current state-of-the-art unsupervised methods in neural machine translation (NMT). In ten translation tasks with various data settings, we analyze the conditions under which ... 详细信息
来源: 评论
How Much Self-Attention Do We Needƒ Trading Attention for Feed-Forward Layers
How Much Self-Attention Do We Needƒ Trading Attention for F...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Kazuki Irie Alexander Gerstenberger Ralf Schlüter Hermann Ney Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen Germany
We propose simple architectural modifications in the standard Transformer with the goal to reduce its total state size (defined as the number of self-attention layers times the sum of the key and value dimensions, tim...
来源: 评论
Layer-Normalized LSTM for Hybrid-Hmm and End-To-End ASR
Layer-Normalized LSTM for Hybrid-Hmm and End-To-End ASR
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Mohammad Zeineldeen Albert Zeyer Ralf Schluter Hermann Ney Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen Germany
Training deep neural networks is often challenging in terms of training stability. It often requires careful hyperparameter tuning or a pretraining scheme to converge. Layer normalization (LN) has shown to be a crucia...
来源: 评论