咨询与建议

限定检索结果

文献类型

  • 328 篇 会议
  • 129 篇 期刊文献

馆藏范围

  • 457 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 320 篇 工学
    • 241 篇 计算机科学与技术...
    • 210 篇 软件工程
    • 98 篇 信息与通信工程
    • 27 篇 生物工程
    • 18 篇 控制科学与工程
    • 17 篇 化学工程与技术
    • 16 篇 电气工程
    • 14 篇 电子科学与技术(可...
    • 13 篇 仪器科学与技术
    • 11 篇 生物医学工程(可授...
    • 7 篇 机械工程
    • 7 篇 建筑学
    • 6 篇 安全科学与工程
    • 5 篇 土木工程
    • 5 篇 农业工程
  • 170 篇 理学
    • 122 篇 物理学
    • 58 篇 数学
    • 32 篇 生物学
    • 22 篇 统计学(可授理学、...
    • 17 篇 化学
    • 10 篇 系统科学
  • 78 篇 管理学
    • 69 篇 图书情报与档案管...
    • 6 篇 管理科学与工程(可...
  • 15 篇 医学
    • 13 篇 基础医学(可授医学...
    • 13 篇 临床医学
    • 8 篇 药学(可授医学、理...
    • 6 篇 公共卫生与预防医...
  • 9 篇 法学
    • 7 篇 社会学
  • 8 篇 文学
    • 6 篇 中国语言文学
    • 5 篇 外国语言文学
  • 6 篇 教育学
  • 5 篇 农学
  • 1 篇 经济学

主题

  • 47 篇 speech recogniti...
  • 31 篇 speech
  • 30 篇 training
  • 18 篇 acoustics
  • 14 篇 machine translat...
  • 13 篇 decoding
  • 12 篇 social networkin...
  • 12 篇 speaker recognit...
  • 11 篇 hidden markov mo...
  • 11 篇 computational mo...
  • 11 篇 semantics
  • 10 篇 conferences
  • 9 篇 speech processin...
  • 9 篇 computational li...
  • 9 篇 feature extracti...
  • 9 篇 embeddings
  • 8 篇 training data
  • 8 篇 natural language...
  • 8 篇 pipelines
  • 7 篇 lattices

机构

  • 88 篇 human language t...
  • 54 篇 human language t...
  • 43 篇 center for langu...
  • 21 篇 center for langu...
  • 20 篇 human language t...
  • 20 篇 human language t...
  • 18 篇 center for langu...
  • 15 篇 human language t...
  • 13 篇 center for langu...
  • 12 篇 human language t...
  • 11 篇 human language t...
  • 10 篇 johns hopkins un...
  • 9 篇 johns hopkins un...
  • 8 篇 human language t...
  • 7 篇 human language t...
  • 7 篇 department of co...
  • 7 篇 xiaomi corp.
  • 6 篇 computer and inf...
  • 6 篇 xiaomi corporati...
  • 6 篇 center for langu...

作者

  • 64 篇 dredze mark
  • 50 篇 khudanpur sanjee...
  • 43 篇 van durme benjam...
  • 30 篇 dehak najim
  • 27 篇 sanjeev khudanpu...
  • 21 篇 post matt
  • 20 篇 mcnamee paul
  • 20 篇 hermansky hynek
  • 20 篇 callison-burch c...
  • 19 篇 villalba jesús
  • 18 篇 povey daniel
  • 16 篇 duh kevin
  • 16 篇 mayfield james
  • 15 篇 zelasko piotr
  • 15 篇 daniel povey
  • 15 篇 watanabe shinji
  • 14 篇 wiesner matthew
  • 14 篇 andrews nicholas
  • 13 篇 paul michael j.
  • 13 篇 mccree alan

语言

  • 448 篇 英文
  • 9 篇 其他
检索条件"机构=Human Language Technology Center of Excellence and Center for Language and Speech Processing"
457 条 记 录,以下是161-170 订阅
排序:
MultiplEYE: Creating a multilingual eye-tracking-while-reading corpus  25
MultiplEYE: Creating a multilingual eye-tracking-while-readi...
收藏 引用
Proceedings of the 2025 Symposium on Eye Tracking Research and Applications
作者: Deborah Noemie Jakobi Maja Stegenwallner-Schütz Nora Hollenstein Cui Ding Ramune Kaspere Ana Matić Škorić Eva Pavlinusic Vilus Stefan Frank Marie-Luise Müller Kristine M Jensen de López Nik Kharlamov Hanne B. Søndergaard Knudsen Yevgeni Berzak Ella Lion Irina A. Sekerina Cengiz Acarturk Mohd Faizan Ansari Katarzyna Harezlak Pawel Kasprowski Ana Bautista Lisa Beinborn Anna Bondar Antonia Boznou Leah Bradshaw Jana Mara Hofmann Thyra Krosness Not Battesta Soliva Anila Çepani Kristina Cergol Ana Došen Marijan Palmovic Adelina Çerpja Dalí Chirino Jan Chromý Vera Demberg Iza Škrjanec Nazik Dinçtopal Deniz Dr. Inmaculada Fajardo Mariola Giménez-Salvador Xavier Mínguez-López Maroš Filip Zigmunds Freibergs Jéssica Gomes Andreia Janeiro Paula Luegi João Veríssimo Sasho Gramatikov Jana Hasenäcker Alba Haveriku Nelda Kote Muhammad M. Kamal Hanna Kędzierska Dorota Klimek-Jankowska Sara Kosutar Daniel G. Krakowczyk Izabela Krejtz Marta Łockiewicz Kaidi Lõo Jurgita Motiejūnienė Jamal A. Nasir Johanne Sofie Krog Nedergård Ayşegül Özkan Mikuláš Preininger Loredana Pungă David Robert Reich Chiara Tschirner Špela Rot Andreas Säuberli Jordi Solé-Casals Ekaterina Strati Igor Svoboda Evis Trandafili Spyridoula Varlokosta Mila Vulchanova Lena A. Jäger Department of Computational Linguistics University of Zurich Zurich Switzerland Humboldt-University of Berlin Berlin Germany and University of Koblenz Koblenz Germany Kaunas University of Technology Kaunas Lithuania Faculty of Education and Rehabilitation Sciences Dept of Speech and Language pathology Laboratory for Psycholinguistic Research University of Zagreb Zagreb Croatia Centre for Language Studies Radboud University Nijmegen Netherlands ZPID Leibnitz Institute for Psychology Trier Germany Aalborg University Aalborg Denmark Data and Decision Sciences Technion Haifa Israel Department of Psychology College of Staten Island Staten Island New York USA Cognitive Science Department Jagiellonian University Krakow Poland Silesian University of Technology Gliwice Poland Institute of Informatics Silesian University of Technology Gliwice Poland Basque Center on Cognition Brain & Language Donostia Spain Human-Centered Data Science University of Göttingen Göttingen Germany Department of Computational Linguistics University of Zurich Zurich Switzerland and Digital Society Initiative University of Zurich Zurich Switzerland Lab of Psycholinguistics & Neurolinguistics National and Kapodistrian University of Athens Athens Greece Department of Computational Linguistics University of Zurich University of Zurich Switzerland University of Zurich Zurich Switzerland University of Tirana Tirana Albania Faculty of Teacher Education University of Zagreb Zagreb Croatia Hrvatska Croatia and Laboratory for Psycholinguistic Research University of Zagreb Zagreb Croatia Hrvatska Croatia University of Zagreb Zagreb Croatia Dept. of Speech & Lang. Path. Laboratory for Psycholinguistic Research University of Zagreb Zagreb Croatia Hrvatska Croatia Academy of Sciences of Albania Tirana Albania Radboud University Nijmegen Netherlands Institute of Czech Language and Theory of Communication Faculty of Arts Charles University Prague Czech Republic Saarland Universit
来源: 评论
AI Chest 4 All
AI Chest 4 All
收藏 引用
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
作者: P. Thammarach S. Khaengthanyakan S. Vongsurakrai P. Phienphanich P. Pooprasert A. Yaemsuk P. Vanichvarodom N. Munpolsri S. Khwayotha M. Lertkowit S. Tungsagunwattana C. Vijitsanguan S. Lertrojanapunya W. Noisiri I. Chiawiriyabunya N. Aphikulvanich C. Tantibundhit Faculty of Engineering Center of Excellence in Intelligence Informatics Speech and Language Technology and Service Innovation (CILS) Faculty of Medicine Cardiff University School of Medicine United Kingdom Udonthani Cancer Hospital Thailand Central Chest Institute of Thailand Department of Medical Services Thailand
AIChest4All is the name of the model used to label and screening diseases in our area of focus, Thailand, including heart disease, lung cancer, and tuberculosis. This is aimed to aid radiologist in Thailand especially... 详细信息
来源: 评论
The Vicomtech-PRHLT speech Transcription Systems for the Iberspeech-RTVE 2018 speech to Text Transcription Challenge  4
The Vicomtech-PRHLT Speech Transcription Systems for the Ibe...
收藏 引用
4th International Conference on Advances in speech and language Technologies for Iberian languages, Iberspeech 2018
作者: Arzelus, Haritz Álvarez, Aitor Bernath, Conrad García, Eneritz Granell, Emilio Martínez-Hinarejos, Carlos D. Vicomtech Human Speech and Language Technology Group Spain Pattern Recognition and Human Language Technologies Research Center Universitat Politècnica de València Spain
This paper describes our joint submission to the Iberspeech-RTVE speech to Text Transcription Challenge 2018, which calls for automatic speech transcription systems to be evaluated in realistic TV shows. With the aim ... 详细信息
来源: 评论
language Recognition for Telephone and Video speech: The JHU HLTCOE Submission for NIST LRE17
Language Recognition for Telephone and Video Speech: The JHU...
收藏 引用
2018 Speaker and language Recognition Workshop, ODYSSEY 2018
作者: McCree, Alan Snyder, David Sell, Gregory Garcia-Romero, Daniel Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD United States
This paper presents our newest language recognition systems developed for NIST LRE17. For this challenging limited data multidomain task, we were able to get very good performance with our state-of-the-art DNN senone ... 详细信息
来源: 评论
Espresso: A Fast End-to-End Neural speech Recognition Toolkit
Espresso: A Fast End-to-End Neural Speech Recognition Toolki...
收藏 引用
IEEE Workshop on Automatic speech Recognition and Understanding
作者: Yiming Wang Tongfei Chen Hainan Xu Shuoyang Ding Hang Lv Yiwen Shao Nanyun Peng Lei Xie Shinji Watanabe Sanjeev Khudanpur Center of Language and Speech Processing Johns Hopkins University Baltimore MD USA ASLP@NPU School of Computer Science Northwestern Polytechnical University Xian China Information Sciences Institute University of Southern California Los Angeles CA USA Human Language Technology Center of Excellence Johns Hopkins University Baltimore MD USA
We present Espresso, an open-source, modular, extensible end-to-end neural automatic speech recognition (ASR) toolkit based on the deep learning library PyTorch and the popular neural machine translation toolkit FAIRS... 详细信息
来源: 评论
Exploring E2E speech recognition systems for new languages  4
Exploring E2E speech recognition systems for new languages
收藏 引用
4th International Conference on Advances in speech and language Technologies for Iberian languages, Iberspeech 2018
作者: Bernath, Conrad Álvarez, Aitor Arzelus, Haritz Martínez-Hinarejos, Carlos-D. Human Speech and Language Technology Group Vicomtech Spain Pattern Recognition and Human Language Technologies Research Center Universitat Politècnica de València Spain
Over the last few years, advances in both machine learning algorithms and computer hardware have led to significant improvements in speech recognition technology, mainly through the use of Deep Learning paradigms. As ... 详细信息
来源: 评论
How Do Source-side Monolingual Word Embeddings Impact Neural Machine Translation?
arXiv
收藏 引用
arXiv 2018年
作者: Ding, Shuoyang Duh, Kevin Center for Language and Speech Processing Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD United States
Using pre-trained word embeddings as input layer is a common practice in many natural language processing (NLP) tasks, but it is largely neglected for neural machine translation (NMT). In this paper, we conducted a sy... 详细信息
来源: 评论
X-VECTORS: ROBUST DNN EMBEDDINGS FOR SPEAKER RECOGNITION
X-VECTORS: ROBUST DNN EMBEDDINGS FOR SPEAKER RECOGNITION
收藏 引用
IEEE International Conference on Acoustics, speech and Signal processing
作者: David Snyder Daniel Garcia-Romero Gregory Sell Daniel Povey Sanjeev Khudanpur Center for Language and Speech Processing & Human Language Technology Center of Excellence The Johns Hopkins University Baltimore MD 21218 USA
In this paper, we use data augmentation to improve performance of deep neural network (DNN) embeddings for speaker recognition. The DNN, which is trained to discriminate between speakers, maps variable-length utteranc... 详细信息
来源: 评论
Building corpora for single-channel speech separation across multiple domains
arXiv
收藏 引用
arXiv 2018年
作者: MacIejewski, Matthew Sell, Gregory Garcia-Perera, Leibny Paola Watanabe, Shinji Khudanpur, Sanjeev Center for Language and Speech Processing Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD21218 United States
To date, the bulk of research on single-channel speech separation has been conducted using clean, near-field, read speech, which is not representative of many modern applications. In this work, we develop a procedure ... 详细信息
来源: 评论
speech Enhancement via Deep Spectrum Image Translation Network  26
Speech Enhancement via Deep Spectrum Image Translation Netwo...
收藏 引用
26th National and 4th International Iranian Conference on Biomedical Engineering, ICBME 2019
作者: Kashani, Hamidreza Baradaran Jodeiri, Ata Goodarzi, Mohammad Mohsen Rezaei, Iman Sarraf Amirkabir University of Technology Electrical Engineering Faculty Tehran Iran College of Engineering University of Tehran School of Electrical Computer Engineering Tehran Iran Buein Zahra Technical University Department of Electrical and Computer Engineering Qazvin Iran Speech and Language Processing Group Research Center for Development of Advanced Technologies Tehran Iran
Quality and intelligibility of speech signals are degraded under additive background noise which is a critical problem for hearing aid and cochlear implant users. Motivated to address this problem, we propose a novel ... 详细信息
来源: 评论