咨询与建议

限定检索结果

文献类型

  • 328 篇 会议
  • 129 篇 期刊文献

馆藏范围

  • 457 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 320 篇 工学
    • 241 篇 计算机科学与技术...
    • 210 篇 软件工程
    • 98 篇 信息与通信工程
    • 27 篇 生物工程
    • 18 篇 控制科学与工程
    • 17 篇 化学工程与技术
    • 16 篇 电气工程
    • 14 篇 电子科学与技术(可...
    • 13 篇 仪器科学与技术
    • 11 篇 生物医学工程(可授...
    • 7 篇 机械工程
    • 7 篇 建筑学
    • 6 篇 安全科学与工程
    • 5 篇 土木工程
    • 5 篇 农业工程
  • 170 篇 理学
    • 122 篇 物理学
    • 58 篇 数学
    • 32 篇 生物学
    • 22 篇 统计学(可授理学、...
    • 17 篇 化学
    • 10 篇 系统科学
  • 78 篇 管理学
    • 69 篇 图书情报与档案管...
    • 6 篇 管理科学与工程(可...
  • 15 篇 医学
    • 13 篇 基础医学(可授医学...
    • 13 篇 临床医学
    • 8 篇 药学(可授医学、理...
    • 6 篇 公共卫生与预防医...
  • 9 篇 法学
    • 7 篇 社会学
  • 8 篇 文学
    • 6 篇 中国语言文学
    • 5 篇 外国语言文学
  • 6 篇 教育学
  • 5 篇 农学
  • 1 篇 经济学

主题

  • 47 篇 speech recogniti...
  • 31 篇 speech
  • 30 篇 training
  • 18 篇 acoustics
  • 14 篇 machine translat...
  • 13 篇 decoding
  • 12 篇 social networkin...
  • 12 篇 speaker recognit...
  • 11 篇 hidden markov mo...
  • 11 篇 computational mo...
  • 11 篇 semantics
  • 10 篇 conferences
  • 9 篇 speech processin...
  • 9 篇 computational li...
  • 9 篇 feature extracti...
  • 9 篇 embeddings
  • 8 篇 training data
  • 8 篇 natural language...
  • 8 篇 pipelines
  • 7 篇 lattices

机构

  • 88 篇 human language t...
  • 54 篇 human language t...
  • 43 篇 center for langu...
  • 21 篇 center for langu...
  • 20 篇 human language t...
  • 20 篇 human language t...
  • 18 篇 center for langu...
  • 15 篇 human language t...
  • 13 篇 center for langu...
  • 12 篇 human language t...
  • 11 篇 human language t...
  • 10 篇 johns hopkins un...
  • 9 篇 johns hopkins un...
  • 8 篇 human language t...
  • 7 篇 human language t...
  • 7 篇 department of co...
  • 7 篇 xiaomi corp.
  • 6 篇 computer and inf...
  • 6 篇 xiaomi corporati...
  • 6 篇 center for langu...

作者

  • 64 篇 dredze mark
  • 50 篇 khudanpur sanjee...
  • 43 篇 van durme benjam...
  • 30 篇 dehak najim
  • 27 篇 sanjeev khudanpu...
  • 21 篇 post matt
  • 20 篇 mcnamee paul
  • 20 篇 hermansky hynek
  • 20 篇 callison-burch c...
  • 19 篇 villalba jesús
  • 18 篇 povey daniel
  • 16 篇 duh kevin
  • 16 篇 mayfield james
  • 15 篇 zelasko piotr
  • 15 篇 daniel povey
  • 15 篇 watanabe shinji
  • 14 篇 wiesner matthew
  • 14 篇 andrews nicholas
  • 13 篇 paul michael j.
  • 13 篇 mccree alan

语言

  • 447 篇 英文
  • 10 篇 其他
检索条件"机构=Human Language Technology Center of Excellence and Center for Language and Speech Processing"
457 条 记 录,以下是171-180 订阅
排序:
Espresso: A fast end-to-end neural speech recognition toolkit
arXiv
收藏 引用
arXiv 2019年
作者: Wang, Yiming Chen, Tongfei Xu, Hainan Ding, Shuoyang Lv, Hang Shao, Yiwen Peng, Nanyun Xie, Lei Watanabe, Shinji Khudanpur, Sanjeev Center of Language and Speech Processing Johns Hopkins University BaltimoreMD United States Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD United States Information Sciences Institute University of Southern California Los AngelesCA United States ASLP@NPU School of Computer Science Northwestern Polytechnical University Xi'an China
We present ESPRESSO, an open-source, modular, extensible end-to-end neural automatic speech recognition (ASR) toolkit based on the deep learning library PyTorch and the popular neural machine translation toolkit FAIRS... 详细信息
来源: 评论
Pretraining by Backtranslation for End-to-end ASR in Low-Resource Settings
arXiv
收藏 引用
arXiv 2018年
作者: Wiesner, Matthew Renduchintala, Adithya Watanabe, Shinji Liu, Chunxi Dehak, Najim Khudanpur, Sanjeev Center for Language and Speech Processing Johns Hopkins University United States Human Language Technology Center of Excellence Johns Hopkins University United States
We explore training attention-based encoder-decoder ASR in low-resource settings. These models perform poorly when trained on small amounts of transcribed speech, in part because they depend on having sufficient targe... 详细信息
来源: 评论
Low-resource contextual topic identification on speech
arXiv
收藏 引用
arXiv 2018年
作者: Liu, Chunxi Wiesner, Matthew Watanabe, Shinji Harman, Craig Trmal, Jan Dehak, Najim Khudanpur, Sanjeev Center for Language and Speech Processing Johns Hopkins University United States Human Language Technology Center of Excellence Johns Hopkins University United States
In topic identification (topic ID) on real-world unstructured audio, an audio instance of variable topic shifts is first broken into sequential segments, and each segment is independently classified. We first present ... 详细信息
来源: 评论
A Synthetic Recipe for OCR
A Synthetic Recipe for OCR
收藏 引用
International Conference on Document Analysis and Recognition
作者: David Etter Stephen Rawls Cameron Carpenter Gregory Sell Human Language Technology Center of Excellence Johns Hopkins University Baltimore USA Information Science Institute University of Southern California Johns Hopkins University
Synthetic data generation for optical character recognition (OCR) promises unlimited training data at zero annotation cost. With enough fonts and seed text, we should be able to generate data to train a model that app... 详细信息
来源: 评论
Multi-task domain adaptation for sequence tagging  2
Multi-task domain adaptation for sequence tagging
收藏 引用
2nd Workshop on Representation Learning for NLP, Rep4NLP 2017 at the 55th Annual Meeting of the Association for Computational Linguistics, ACL 2017
作者: Peng, Nanyun Dredze, Mark Human Language Technology Center of Excellence Center for Language and Speech Processing Johns Hopkins University BaltimoreMD21218 United States
Many domain adaptation approaches rely on learning cross domain shared representations to transfer the knowledge learned in one domain to other domains. Traditional domain adaptation only considers adapting for one ta...
来源: 评论
Calibration of Deep Probabilistic Models with Decoupled Bayesian Neural Networks
arXiv
收藏 引用
arXiv 2019年
作者: Maroñas, Juan Paredes, Roberto Ramos, Daniel PRHLT - Pattern Recognition and Human Language Technology Research Center Universitat Politècnica de Valencia Spain AUDIAS - Audio Data Intelligence and Speech Universidad Autónoma de Madrid Spain
Deep Neural Networks (DNNs) have achieved state-of-the-art accuracy performance in many tasks. However, recent works have pointed out that the outputs provided by these models are not well-calibrated, seriously limiti... 详细信息
来源: 评论
Predicting asymmetric transitive relations in knowledge bases  1
Predicting asymmetric transitive relations in knowledge base...
收藏 引用
1st Workshop on Knowledge Graphs and Semantics for Text Retrieval and Analysis, KG4IR 2017
作者: Rastogi, Pushpendre Van Durme, Benjamin Center for Language and Speech Processing Johns Hopkins University United States Human Language Technology Center of Excellence Johns Hopkins University United States
Knowledge Base Completion (KBC), or link prediction, is the task of inferring missing edges in an existing knowledge graph. Although a number of methods have been evaluated empirically on select datasets for KBC, much... 详细信息
来源: 评论
The JHU machine translation systems for WMT 2017  2
The JHU machine translation systems for WMT 2017
收藏 引用
2nd Conference on Machine Translation, WMT 2017
作者: Ding, Shuoyang Khayrallah, Huda Koehn, Philipp Post, Matt Kumar, Gaurav Duh, Kevin Center for Language and Speech Processing Johns Hopkins University United States Human Language Technology Center of Excellence Johns Hopkins University United States
This paper describes the Johns Hopkins University submissions to the shared translation task of EMNLP 2017 Second Conference on Machine Translation (WMT 2017). We set up phrase-based, syntax-based and/or neural machin... 详细信息
来源: 评论
Training relation embeddings under logical constraints  1
Training relation embeddings under logical constraints
收藏 引用
1st Workshop on Knowledge Graphs and Semantics for Text Retrieval and Analysis, KG4IR 2017
作者: Rastogi, Pushpendre Poliak, Adam Van Durme, Benjamin Center for Language and Speech Processing Johns Hopkins University United States Human Language Technology Center of Excellence Johns Hopkins University United States
We present ways of incorporating logical rules into the construction of embedding based Knowledge Base Completion (KBC) systems. Enforcing "logical consistency" in the predictions of a KBC system guarantees ... 详细信息
来源: 评论
On the evaluation of semantic phenomena in neural machine translation using natural language inference
On the evaluation of semantic phenomena in neural machine tr...
收藏 引用
2018 Conference of the North American Chapter of the Association for Computational Linguistics: human language Technologies, NAACL HLT 2018
作者: Poliak, Adam Belinkov, Yonatan Glass, James Van Durme, Benjamin Center for Language and Speech Processing Johns Hopkins University BaltimoreMD21218 United States Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology CambridgeMA02139 United States
We propose a process for investigating the extent to which sentence representations arising from neural machine translation (NMT) systems encode distinct semantic *** use these representations as features to train a n... 详细信息
来源: 评论