咨询与建议

限定检索结果

文献类型

  • 329 篇 会议
  • 129 篇 期刊文献

馆藏范围

  • 458 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 322 篇 工学
    • 243 篇 计算机科学与技术...
    • 211 篇 软件工程
    • 99 篇 信息与通信工程
    • 27 篇 生物工程
    • 19 篇 控制科学与工程
    • 17 篇 电气工程
    • 17 篇 化学工程与技术
    • 14 篇 电子科学与技术(可...
    • 13 篇 仪器科学与技术
    • 11 篇 生物医学工程(可授...
    • 7 篇 机械工程
    • 7 篇 建筑学
    • 6 篇 安全科学与工程
    • 5 篇 土木工程
    • 5 篇 农业工程
  • 171 篇 理学
    • 122 篇 物理学
    • 59 篇 数学
    • 32 篇 生物学
    • 22 篇 统计学(可授理学、...
    • 17 篇 化学
    • 10 篇 系统科学
  • 78 篇 管理学
    • 69 篇 图书情报与档案管...
    • 6 篇 管理科学与工程(可...
  • 15 篇 医学
    • 13 篇 基础医学(可授医学...
    • 13 篇 临床医学
    • 8 篇 药学(可授医学、理...
    • 6 篇 公共卫生与预防医...
  • 9 篇 法学
    • 7 篇 社会学
  • 8 篇 文学
    • 6 篇 中国语言文学
    • 5 篇 外国语言文学
  • 6 篇 教育学
  • 5 篇 农学
  • 1 篇 经济学

主题

  • 47 篇 speech recogniti...
  • 31 篇 speech
  • 30 篇 training
  • 18 篇 acoustics
  • 14 篇 machine translat...
  • 13 篇 decoding
  • 12 篇 social networkin...
  • 12 篇 speaker recognit...
  • 11 篇 hidden markov mo...
  • 11 篇 computational mo...
  • 11 篇 semantics
  • 10 篇 conferences
  • 9 篇 speech processin...
  • 9 篇 computational li...
  • 9 篇 feature extracti...
  • 9 篇 embeddings
  • 8 篇 training data
  • 8 篇 natural language...
  • 8 篇 pipelines
  • 7 篇 lattices

机构

  • 88 篇 human language t...
  • 55 篇 human language t...
  • 43 篇 center for langu...
  • 21 篇 center for langu...
  • 20 篇 human language t...
  • 20 篇 human language t...
  • 18 篇 center for langu...
  • 15 篇 human language t...
  • 13 篇 center for langu...
  • 12 篇 human language t...
  • 11 篇 human language t...
  • 10 篇 johns hopkins un...
  • 9 篇 johns hopkins un...
  • 8 篇 human language t...
  • 7 篇 human language t...
  • 7 篇 department of co...
  • 7 篇 xiaomi corp.
  • 6 篇 computer and inf...
  • 6 篇 xiaomi corporati...
  • 6 篇 center for langu...

作者

  • 64 篇 dredze mark
  • 50 篇 khudanpur sanjee...
  • 43 篇 van durme benjam...
  • 30 篇 dehak najim
  • 27 篇 sanjeev khudanpu...
  • 21 篇 post matt
  • 20 篇 mcnamee paul
  • 20 篇 hermansky hynek
  • 20 篇 callison-burch c...
  • 19 篇 villalba jesús
  • 18 篇 povey daniel
  • 16 篇 duh kevin
  • 16 篇 mayfield james
  • 15 篇 zelasko piotr
  • 15 篇 daniel povey
  • 15 篇 watanabe shinji
  • 14 篇 wiesner matthew
  • 14 篇 andrews nicholas
  • 13 篇 paul michael j.
  • 13 篇 mccree alan

语言

  • 443 篇 英文
  • 15 篇 其他
检索条件"机构=Human Language Technology Center of Excellence and Center for Language and Speech Processing"
458 条 记 录,以下是221-230 订阅
排序:
Named entity recognition for Chinese social media with jointly trained embeddings
Named entity recognition for Chinese social media with joint...
收藏 引用
Conference on Empirical Methods in Natural language processing, EMNLP 2015
作者: Peng, Nanyun Dredze, Mark Human Language Technology Center of Excellence Center for Language and Speech Processing Johns Hopkins University BaltimoreMD21218 United States
We consider the task of named entity recognition for Chinese social media. The long line of work in Chinese NER has focused on formal domains, and NER for social media has been largely restricted to English. We presen... 详细信息
来源: 评论
Parallel training of DNNs with natural gradient and parameter averaging  3
Parallel training of DNNs with natural gradient and paramete...
收藏 引用
3rd International Conference on Learning Representations, ICLR 2015
作者: Povey, Daniel Zhang, Xiaohui Khudanpur, Sanjeev Center for Language and Speech Processing and Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD21218 United States
We describe the neural-network training framework used in the Kaldi speech recognition toolkit, which is geared towards training DNNs with large amounts of training data using multiple GPU-equipped or multi-core machi... 详细信息
来源: 评论
Summary of the 2015 NIST language recognition i-vector machine learning challenge
Summary of the 2015 NIST language recognition i-vector machi...
收藏 引用
Speaker and language Recognition Workshop, Odyssey 2016
作者: Tong, Audrey Greenberg, Craig Martin, Alvin Bansé, Désiré Howard, John Zhao, Hui Doddington, George Garcia-Romero, Daniel McCree, Alan Reynolds, Douglas Singer, Elliot Hernández-Cordero, Jaime Mason, Lisa National Institute of Standards and Technology United States Human Language Technology Center of Excellence Johns Hopkins University United States MIT Lincoln Laboratory United States U.S. Department of Defense United States
In 2015 NIST coordinated the first language recognition evaluation (LRE) that used i-vectors as input, with the goals of attracting researchers outside of the speech processing community to tackle the language recogni... 详细信息
来源: 评论
Geolocation for Twitter: Timing matters  15
Geolocation for Twitter: Timing matters
收藏 引用
15th Conference of the North American Chapter of the Association for Computational Linguistics: human language Technologies, NAACL HLT 2016
作者: Dredze, Mark Osborne, Miles Kambadur, Prabhanjan Bloomberg L.P. 731 Lexington Ave New YorkNY10022 United States Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD21211 United States
Automated geolocation of social media messages can benefit a variety of downstream applications. However, these geolocation systems are typically evaluated without attention to how changes in time impact geolocation. ... 详细信息
来源: 评论
Multiview LSA: Representation learning via generalized CCA
Multiview LSA: Representation learning via generalized CCA
收藏 引用
Conference of the North American Chapter of the Association for Computational Linguistics: human language Technologies, NAACL HLT 2015
作者: Rastogi, Pushpendre Van Durme, Benjamin Arora, Raman Center for Language and Speech Processing Johns Hopkins University United States Human Language Technology Center of Excellence Johns Hopkins University United States
Multiview LSA (MVLSA) is a generalization of Latent Semantic Analysis (LSA) that supports the fusion of arbitrary views of data and relies on Generalized Canonical Correlation Analysis (GCCA). We present an algorithm ... 详细信息
来源: 评论
Performance monitoring for automatic speech recognition in noisy multi-channel environments
Performance monitoring for automatic speech recognition in n...
收藏 引用
2016 IEEE Workshop on Spoken language technology, SLT 2016
作者: Meyer, Bernd T. Mallidi, Sri Harish Castro Martínez, Angel Mario Paya-Vaya, Guillermo Kayser, Hendrik Hermansky, Hynek Center for Language and Speech Processing Johns Hopkins University BaltimoreMD United States Medizinische Physik Carl von Ossietzky Universität Oldenburg Germany Institute of Microelectronic Systems Leibniz Universität Hannover Germany 4Cluster of Excellence Hearing4all Germany
In many applications of machine listening it is useful to know how well an automatic speech recognition system will do before the actual recognition is performed. In this study we investigate different performance mea... 详细信息
来源: 评论
Demographer: Extremely Simple Name Demographics  1
Demographer: Extremely Simple Name Demographics
收藏 引用
EMNLP 2016 1st Workshop on Natural language processing and Computational Social Science, NLP + CSS 2016
作者: Knowles, Rebecca Carroll, Josh Dredze, Mark Department of Computer Science Johns Hopkins University BaltimoreMD21218 United States Qntfy CrownsvilleMD21032 United States Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD21211 United States
The lack of demographic information available when conducting passive analysis of social media content can make it difficult to compare results to traditional survey results. We present DEMOGRAPHER,1 a tool that predi... 详细信息
来源: 评论
Learning to predict script events from domain-specific text  4
Learning to predict script events from domain-specific text
收藏 引用
4th Joint Conference on Lexical and Computational Semantics, *SEM 2015
作者: Rudinger, Rachel Demberg, Vera Modi, Ashutosh Van Durme, Benjamin Pinkal, Manfred Center for Language and Speech Processing United States Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD United States MMCI Cluster of Excellence Saarland University Saarbrucken Germany
The automatic induction of scripts (Schank and Abelson, 1977) has been the focus of many recent works. In this paper, we employ a variety of these methods to learn Schank and Abelson's canonical restaurant script,...
来源: 评论
Combining word embeddings and feature embeddings for fine-grained relation extraction
Combining word embeddings and feature embeddings for fine-gr...
收藏 引用
Conference of the North American Chapter of the Association for Computational Linguistics: human language Technologies, NAACL HLT 2015
作者: Yu, Mo Gormley, Matthew R. Dredze, Mark Machine Intelligence and Translation Lab Harbin Institute of Technology Harbin China Human Language Technology Center of Excellence Center for Language and Speech Processing Johns Hopkins University BaltimoreMD21218 United States
Compositional embedding models build a representation for a linguistic structure based on its component word embeddings. While recent work has combined these word embeddings with hand crafted features for improved per... 详细信息
来源: 评论
FrameNet+: Fast paraphrastic tripling of FrameNet  53
FrameNet+: Fast paraphrastic tripling of FrameNet
收藏 引用
53rd Annual Meeting of the Association for Computational Linguistics and 7th International Joint Conference on Natural language processing of the Asian Federation of Natural language processing, ACL-IJCNLP 2015
作者: Pavlick, Ellie Wolfe, Travis Rastogi, Pushpendre Callison-Burch, Chris Dredze, Mark Van Durme, Benjamin Computer and Information Science Department University of Pennsylvania United States Center for Language and Speech Processing Johns Hopkins University United States Human Language Technology Center of Excellence Johns Hopkins University United States
We increase the lexical coverage of FrameNet through automatic paraphrasing. We use crowdsourcing to manually filter out bad paraphrases in order to ensure a high-precision resource. Our expanded FrameNet contains an ...
来源: 评论