咨询与建议

限定检索结果

文献类型

  • 329 篇 会议
  • 129 篇 期刊文献

馆藏范围

  • 458 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 322 篇 工学
    • 243 篇 计算机科学与技术...
    • 211 篇 软件工程
    • 99 篇 信息与通信工程
    • 27 篇 生物工程
    • 19 篇 控制科学与工程
    • 17 篇 电气工程
    • 17 篇 化学工程与技术
    • 14 篇 电子科学与技术(可...
    • 13 篇 仪器科学与技术
    • 11 篇 生物医学工程(可授...
    • 7 篇 机械工程
    • 7 篇 建筑学
    • 6 篇 安全科学与工程
    • 5 篇 土木工程
    • 5 篇 农业工程
  • 171 篇 理学
    • 122 篇 物理学
    • 59 篇 数学
    • 32 篇 生物学
    • 22 篇 统计学(可授理学、...
    • 17 篇 化学
    • 10 篇 系统科学
  • 78 篇 管理学
    • 69 篇 图书情报与档案管...
    • 6 篇 管理科学与工程(可...
  • 15 篇 医学
    • 13 篇 基础医学(可授医学...
    • 13 篇 临床医学
    • 8 篇 药学(可授医学、理...
    • 6 篇 公共卫生与预防医...
  • 9 篇 法学
    • 7 篇 社会学
  • 8 篇 文学
    • 6 篇 中国语言文学
    • 5 篇 外国语言文学
  • 6 篇 教育学
  • 5 篇 农学
  • 1 篇 经济学

主题

  • 47 篇 speech recogniti...
  • 31 篇 speech
  • 30 篇 training
  • 18 篇 acoustics
  • 14 篇 machine translat...
  • 13 篇 decoding
  • 12 篇 social networkin...
  • 12 篇 speaker recognit...
  • 11 篇 hidden markov mo...
  • 11 篇 computational mo...
  • 11 篇 semantics
  • 10 篇 conferences
  • 9 篇 speech processin...
  • 9 篇 computational li...
  • 9 篇 feature extracti...
  • 9 篇 embeddings
  • 8 篇 training data
  • 8 篇 natural language...
  • 8 篇 pipelines
  • 7 篇 lattices

机构

  • 88 篇 human language t...
  • 55 篇 human language t...
  • 43 篇 center for langu...
  • 21 篇 center for langu...
  • 20 篇 human language t...
  • 20 篇 human language t...
  • 18 篇 center for langu...
  • 15 篇 human language t...
  • 13 篇 center for langu...
  • 12 篇 human language t...
  • 11 篇 human language t...
  • 10 篇 johns hopkins un...
  • 9 篇 johns hopkins un...
  • 8 篇 human language t...
  • 7 篇 human language t...
  • 7 篇 department of co...
  • 7 篇 xiaomi corp.
  • 6 篇 computer and inf...
  • 6 篇 xiaomi corporati...
  • 6 篇 center for langu...

作者

  • 64 篇 dredze mark
  • 50 篇 khudanpur sanjee...
  • 43 篇 van durme benjam...
  • 30 篇 dehak najim
  • 27 篇 sanjeev khudanpu...
  • 21 篇 post matt
  • 20 篇 mcnamee paul
  • 20 篇 hermansky hynek
  • 20 篇 callison-burch c...
  • 19 篇 villalba jesús
  • 18 篇 povey daniel
  • 16 篇 duh kevin
  • 16 篇 mayfield james
  • 15 篇 zelasko piotr
  • 15 篇 daniel povey
  • 15 篇 watanabe shinji
  • 14 篇 wiesner matthew
  • 14 篇 andrews nicholas
  • 13 篇 paul michael j.
  • 13 篇 mccree alan

语言

  • 443 篇 英文
  • 15 篇 其他
检索条件"机构=Human Language Technology Center of Excellence and Center for Language and Speech Processing"
458 条 记 录,以下是341-350 订阅
排序:
Entity clustering across languages
Entity clustering across languages
收藏 引用
2012 Conference of the North American Chapter of the Association for Computational Linguistics: human language Technologies, NAACL HLT 2012
作者: Green, Spence Andrews, Nicholas Gormley, Matthew R. Dredze, Mark Manning, Christopher D. Computer Science Department Stanford University United States Human Language Technology Center of Excellence Johns Hopkins University United States
Standard entity clustering systems commonly rely on mention (string) matching, syntactic features, and linguistic resources like English WordNet. When co-referent text mentions appear in different languages, these tec... 详细信息
来源: 评论
Feature extraction using 2-D autoregressive models for speaker recognition
Feature extraction using 2-D autoregressive models for speak...
收藏 引用
Speaker and language Recognition Workshop, Odyssey 2012
作者: Ganapathy, Sriram Thomas, Samuel Hermansky, Hynek Dept. of ECE Johns Hopkins University United States Human Language Technology Center of Excellence Johns Hopkins University United States
The degradation in performance of a typical speaker verification system in noisy environments can be attributed to the mis-match in the features derived from clean training and noisy test conditions. The mis-match is ... 详细信息
来源: 评论
Using Categorial Grammar to Label Translation Rules  12
Using Categorial Grammar to Label Translation Rules
收藏 引用
Workshop on Statistical Machine Translation
作者: Jonathan Weese Chris Callison-Burch Adam Lopez Human Language Technology Center of Excellence Johns Hopkins University
Adding syntactic labels to synchronous context-free translation rules can improve performance, but labeling with phrase structure constituents, as in GHKM (Galley et al., 2004), excludes potentially useful translation... 详细信息
来源: 评论
Putting human Assessments of Machine Translation Systems in Order  12
Putting Human Assessments of Machine Translation Systems in ...
收藏 引用
Workshop on Statistical Machine Translation
作者: Adam Lopez Human Language Technology Center of Excellence Johns Hopkins University
human assessment is often considered the gold standard in evaluation of translation systems. But in order for the evaluation to be meaningful, the rankings obtained from human assessment must be consistent and repeata... 详细信息
来源: 评论
Streaming Analysis of Discourse Participants  12
Streaming Analysis of Discourse Participants
收藏 引用
Conference on Empirical Methods in Natural language processing
作者: Benjamin Van Durme Human Language Technology Center of Excellence Johns Hopkins University
Inferring attributes of discourse participants has been treated as a batch-processing task: data such as all tweets from a given author are gathered in bulk, processed, analyzed for a particular feature, then reported... 详细信息
来源: 评论
Name phylogeny: A generative model of string variation
Name phylogeny: A generative model of string variation
收藏 引用
2012 Joint Conference on Empirical Methods in Natural language processing and Computational Natural language Learning, EMNLP-CoNLL 2012
作者: Andrews, Nicholas Eisner, Jason Dredze, Mark Department of Computer Science Human Language Technology Center of Excellence Johns Hopkins University 3400 N. Charles St. Baltimore MD 21218 United States
Many linguistic and textual processes involve transduction of strings. We show how to learn a stochastic transducer from an unorganized collection of strings (rather than string pairs). The role of the transducer is t... 详细信息
来源: 评论
Query by babbling: A research agenda
Query by babbling: A research agenda
收藏 引用
1st ACM Workshop on Information and Knowledge Management for Developing Regions, IKM4DR 2012 - Co-located with CIKM 2012
作者: Oard, Douglas W. College of Information Studies and UMIACS University of Maryland College Park MD United States Human Language Technology Center of Excellence Johns Hopkins University Baltimore MD United States
The Spoken Web, an interconnected collection of spoken content accessed through audio-only mobile phones, holds the promise of transforming information access for users in developing regions. The scale of the Spoken W... 详细信息
来源: 评论
Multi-domain learning: When do domains matter?
Multi-domain learning: When do domains matter?
收藏 引用
2012 Joint Conference on Empirical Methods in Natural language processing and Computational Natural language Learning, EMNLP-CoNLL 2012
作者: Joshi, Mahesh Dredze, Mark Cohen, William W. Rose, Carolyn P. School of Computer Science Carnegie Mellon University Pittsburgh PA 15213 United States Human Language Technology Center of Excellence Johns Hopkins University Baltimore MD 21211 United States
We present a systematic analysis of existing multi-domain learning approaches with respect to two questions. First, many multi-domain learning algorithms resemble ensemble learning algorithms. (1) Are multi-domain lea... 详细信息
来源: 评论
Adapting n-gram maximum entropy language models with conditional entropy regularization
Adapting n-gram maximum entropy language models with conditi...
收藏 引用
2011 IEEE Workshop on Automatic speech Recognition and Understanding, ASRU 2011
作者: Rastrow, Ariya Dredze, Mark Khudanpur, Sanjeev Human Language Technology Center of Excellence Center for Language and Speech Processing Johns Hopkins University Baltimore MD United States
Accurate estimates of language model parameters are critical for building quality text generation systems, such as automatic speech recognition. However, text training data for a domain of interest is often unavailabl... 详细信息
来源: 评论
Efficient discriminative training of long-span language models
Efficient discriminative training of long-span language mode...
收藏 引用
2011 IEEE Workshop on Automatic speech Recognition and Understanding, ASRU 2011
作者: Rastrow, Ariya Dredze, Mark Khudanpur, Sanjeev Human Language Technology Center of Excellence Center for Language and Speech Processing Johns Hopkins University Baltimore MD United States
Long-span language models, such as those involving syntactic dependencies, produce more coherent text than their n-gram counterparts. However, evaluating the large number of sentence-hypotheses in a packed representat... 详细信息
来源: 评论