咨询与建议

限定检索结果

文献类型

  • 329 篇 会议
  • 129 篇 期刊文献

馆藏范围

  • 458 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 322 篇 工学
    • 243 篇 计算机科学与技术...
    • 211 篇 软件工程
    • 99 篇 信息与通信工程
    • 27 篇 生物工程
    • 19 篇 控制科学与工程
    • 17 篇 电气工程
    • 17 篇 化学工程与技术
    • 14 篇 电子科学与技术(可...
    • 13 篇 仪器科学与技术
    • 11 篇 生物医学工程(可授...
    • 7 篇 机械工程
    • 7 篇 建筑学
    • 6 篇 安全科学与工程
    • 5 篇 土木工程
    • 5 篇 农业工程
  • 171 篇 理学
    • 122 篇 物理学
    • 59 篇 数学
    • 32 篇 生物学
    • 22 篇 统计学(可授理学、...
    • 17 篇 化学
    • 10 篇 系统科学
  • 78 篇 管理学
    • 69 篇 图书情报与档案管...
    • 6 篇 管理科学与工程(可...
  • 15 篇 医学
    • 13 篇 基础医学(可授医学...
    • 13 篇 临床医学
    • 8 篇 药学(可授医学、理...
    • 6 篇 公共卫生与预防医...
  • 9 篇 法学
    • 7 篇 社会学
  • 8 篇 文学
    • 6 篇 中国语言文学
    • 5 篇 外国语言文学
  • 6 篇 教育学
  • 5 篇 农学
  • 1 篇 经济学

主题

  • 47 篇 speech recogniti...
  • 31 篇 speech
  • 30 篇 training
  • 18 篇 acoustics
  • 14 篇 machine translat...
  • 13 篇 decoding
  • 12 篇 social networkin...
  • 12 篇 speaker recognit...
  • 11 篇 hidden markov mo...
  • 11 篇 computational mo...
  • 11 篇 semantics
  • 10 篇 conferences
  • 9 篇 speech processin...
  • 9 篇 computational li...
  • 9 篇 feature extracti...
  • 9 篇 embeddings
  • 8 篇 training data
  • 8 篇 natural language...
  • 8 篇 pipelines
  • 7 篇 lattices

机构

  • 88 篇 human language t...
  • 55 篇 human language t...
  • 43 篇 center for langu...
  • 21 篇 center for langu...
  • 20 篇 human language t...
  • 20 篇 human language t...
  • 18 篇 center for langu...
  • 15 篇 human language t...
  • 13 篇 center for langu...
  • 12 篇 human language t...
  • 11 篇 human language t...
  • 10 篇 johns hopkins un...
  • 9 篇 johns hopkins un...
  • 8 篇 human language t...
  • 7 篇 human language t...
  • 7 篇 department of co...
  • 7 篇 xiaomi corp.
  • 6 篇 computer and inf...
  • 6 篇 xiaomi corporati...
  • 6 篇 center for langu...

作者

  • 64 篇 dredze mark
  • 50 篇 khudanpur sanjee...
  • 43 篇 van durme benjam...
  • 30 篇 dehak najim
  • 27 篇 sanjeev khudanpu...
  • 21 篇 post matt
  • 20 篇 mcnamee paul
  • 20 篇 hermansky hynek
  • 20 篇 callison-burch c...
  • 19 篇 villalba jesús
  • 18 篇 povey daniel
  • 16 篇 duh kevin
  • 16 篇 mayfield james
  • 15 篇 zelasko piotr
  • 15 篇 daniel povey
  • 15 篇 watanabe shinji
  • 14 篇 wiesner matthew
  • 14 篇 andrews nicholas
  • 13 篇 paul michael j.
  • 13 篇 mccree alan

语言

  • 443 篇 英文
  • 15 篇 其他
检索条件"机构=Human Language Technology Center of Excellence and Center for Language and Speech Processing"
458 条 记 录,以下是381-390 订阅
排序:
Anomaly detection for random graphs using distributions of vertex invariants
Anomaly detection for random graphs using distributions of v...
收藏 引用
Annual Conference on Information Sciences and Systems (CISS)
作者: Nash Borges Glen A. Coppersmith Gerard G. L. Meyer Carey E. Priebe Human Language Technology Center of Excellence Department of Electrical and Computer Engineering Johns Hopkins University USA Human Language Technology Center of Excellence Department of Applied Mathematics and Statistics Johns Hopkins University USA
Anomaly detection is a longstanding problem with many applications in signal processing. We consider anomaly detection on graphs, a subject which has not previously had treatment in such depth. Our approach is inspire... 详细信息
来源: 评论
Anomaly detection for random graphs using distributions of vertex invariants
Anomaly detection for random graphs using distributions of v...
收藏 引用
Annual Conference on Information Sciences and Systems
作者: Borges, Nash Coppersmith, Glen A. Meyer, Gerard G. L. Priebe, Carey E. Johns Hopkins University Human Language Technology Center of Excellence United States Johns Hopkins University Department of Electrical and Computer Engineering United States Johns Hopkins University Department of Applied Mathematics and Statistics United States
Anomaly detection is a longstanding problem with many applications in signal processing. We consider anomaly detection on graphs, a subject which has not previously had treatment in such depth. Our approach is inspire... 详细信息
来源: 评论
Hierarchical Bayesian Models for Latent Attribute Detection in Social Media  5
Hierarchical Bayesian Models for Latent Attribute Detection ...
收藏 引用
5th International AAAI Conference on Weblogs and Social Media, ICWSM 2011
作者: Rao, Delip Paul, Michael Fink, Clay Yarowsky, David Oates, Timothy Coppersmith, Glen Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD21218 United States Applied Physics Laboratory Johns Hopkins University LaurelMD20723 United States University of Maryland Baltimore County BaltimoreMD21250 United States
We present several novel minimally-supervised models for detecting latent attributes of social media users, with a focus on ethnicity and gender. Previous work on ethnicity detection has used coarse-grained widely sep... 详细信息
来源: 评论
Estimating document frequencies in a speech corpus
Estimating document frequencies in a speech corpus
收藏 引用
2011 IEEE Workshop on Automatic speech Recognition and Understanding, ASRU 2011
作者: Karakos, Damianos Dredze, Mark Church, Ken Jansen, Aren Khudanpur, Sanjeev Human Language Technology Center of Excellence Johns Hopkins University Baltimore MD United States Department of Electrical and Computer Engineering Johns Hopkins University Baltimore MD United States Department of Computer Science Johns Hopkins University Baltimore MD United States
Inverse Document Frequency (IDF) is an important quantity in many applications, including Information Retrieval. IDF is defined in terms of document frequency, df (w), the number of documents that mention w at least o... 详细信息
来源: 评论
Establishing a human language technology center of excellence
Establishing a human language technology center of excellenc...
收藏 引用
作者: Strong, G. Eisner, J. Piatko, C. JHU Human Language Technology Center of Excellence Baltimore MD United States JHU Whiting School of Engineering Baltimore MD United States JHU Applied Physics Laboratory Laurel MD United States
JHU was awarded a long-term contract in January, 2007 to establish and operate a human language technology center of excellence (HLTCOE) near the JHU Homewood campus. The HLTCOE's research focused on advanced tech...
来源: 评论
Creating speech and language data with Amazon's Mechanical Turk
Creating speech and language data with Amazon's Mechanical T...
收藏 引用
2010 Workshop on Creating speech and language Data with Amazon's Mechanical Turk, Mturk 2010 at the 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics: human language Technologies, NAACL-HLT 2010
作者: Callison-Burch, Chris Dredze, Mark Human Language Technology Center of Excellence Center for Language and Speech Processing Johns Hopkins University United States
In this paper we give an introduction to using Amazon's Mechanical Turk crowdsourcing platform for the purpose of collecting data for human language technologies. We survey the papers published in the NAACL-2010 W...
来源: 评论
Sparse auto-associative neural networks: Theory and application to speech recognition
Sparse auto-associative neural networks: Theory and applicat...
收藏 引用
作者: Sivaram, G.S.V.S. Ganapathy, Sriram Hermansky, Hynek Center for Language and Speech Processing Human Language Technology Center of Excellence Johns Hopkins University United States
This paper introduces the sparse auto-associative neural network (SAANN) in which the internal hidden layer output is forced to be sparse. This is achieved by adding a sparse regularization term to the original recons... 详细信息
来源: 评论
Using Mechanical Turk to build machine translation evaluation sets
Using Mechanical Turk to build machine translation evaluatio...
收藏 引用
2010 Workshop on Creating speech and language Data with Amazon's Mechanical Turk, Mturk 2010 at the 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics: human language Technologies, NAACL-HLT 2010
作者: Bloodgood, Michael Callison-Burch, Chris Human Language Technology Center of Excellence Johns Hopkins University United States Center for Language and Speech Processing Johns Hopkins University United States
Building machine translation (MT) test sets is a relatively expensive task. As MT becomes increasingly desired for more and more language pairs and more and more domains, it becomes necessary to build test sets for ea... 详细信息
来源: 评论
NLP on spoken documents without ASR
NLP on spoken documents without ASR
收藏 引用
Conference on Empirical Methods in Natural language processing, EMNLP 2010
作者: Dredze, Mark Jansen, Aren Coppersmith, Glen Church, Ken Human Language Technology Center of Excellence Johns Hopkins University United States Center for Language and Speech Processing Johns Hopkins University United States
There is considerable interest in interdisciplinary combinations of automatic speech recognition (ASR), machine learning, natural language processing, text classification and information retrieval. Many of these boxes... 详细信息
来源: 评论
Entity disambiguation for knowledge base population
Entity disambiguation for knowledge base population
收藏 引用
23rd International Conference on Computational Linguistics, Coling 2010
作者: Dredze, Mark Mcnamee, Paul Rao, Delip Gerber, Adam Finin, Tim Human Language Technology Center of Excellence Center for Language and Speech Processing Johns Hopkins University United States University of Maryland Baltimore County United States
The integration of facts derived from information extraction systems into existing knowledge bases requires a system to disambiguate entity mentions in the text. This is challenging due to issues such as non-uniform v... 详细信息
来源: 评论