咨询与建议

限定检索结果

文献类型

  • 329 篇 会议
  • 129 篇 期刊文献

馆藏范围

  • 458 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 322 篇 工学
    • 243 篇 计算机科学与技术...
    • 211 篇 软件工程
    • 99 篇 信息与通信工程
    • 27 篇 生物工程
    • 19 篇 控制科学与工程
    • 17 篇 电气工程
    • 17 篇 化学工程与技术
    • 14 篇 电子科学与技术(可...
    • 13 篇 仪器科学与技术
    • 11 篇 生物医学工程(可授...
    • 7 篇 机械工程
    • 7 篇 建筑学
    • 6 篇 安全科学与工程
    • 5 篇 土木工程
    • 5 篇 农业工程
  • 171 篇 理学
    • 122 篇 物理学
    • 59 篇 数学
    • 32 篇 生物学
    • 22 篇 统计学(可授理学、...
    • 17 篇 化学
    • 10 篇 系统科学
  • 78 篇 管理学
    • 69 篇 图书情报与档案管...
    • 6 篇 管理科学与工程(可...
  • 15 篇 医学
    • 13 篇 基础医学(可授医学...
    • 13 篇 临床医学
    • 8 篇 药学(可授医学、理...
    • 6 篇 公共卫生与预防医...
  • 9 篇 法学
    • 7 篇 社会学
  • 8 篇 文学
    • 6 篇 中国语言文学
    • 5 篇 外国语言文学
  • 6 篇 教育学
  • 5 篇 农学
  • 1 篇 经济学

主题

  • 47 篇 speech recogniti...
  • 31 篇 speech
  • 30 篇 training
  • 18 篇 acoustics
  • 14 篇 machine translat...
  • 13 篇 decoding
  • 12 篇 social networkin...
  • 12 篇 speaker recognit...
  • 11 篇 hidden markov mo...
  • 11 篇 computational mo...
  • 11 篇 semantics
  • 10 篇 conferences
  • 9 篇 speech processin...
  • 9 篇 computational li...
  • 9 篇 feature extracti...
  • 9 篇 embeddings
  • 8 篇 training data
  • 8 篇 natural language...
  • 8 篇 pipelines
  • 7 篇 lattices

机构

  • 88 篇 human language t...
  • 55 篇 human language t...
  • 43 篇 center for langu...
  • 21 篇 center for langu...
  • 20 篇 human language t...
  • 20 篇 human language t...
  • 18 篇 center for langu...
  • 15 篇 human language t...
  • 13 篇 center for langu...
  • 12 篇 human language t...
  • 11 篇 human language t...
  • 10 篇 johns hopkins un...
  • 9 篇 johns hopkins un...
  • 8 篇 human language t...
  • 7 篇 human language t...
  • 7 篇 department of co...
  • 7 篇 xiaomi corp.
  • 6 篇 computer and inf...
  • 6 篇 xiaomi corporati...
  • 6 篇 center for langu...

作者

  • 64 篇 dredze mark
  • 50 篇 khudanpur sanjee...
  • 43 篇 van durme benjam...
  • 30 篇 dehak najim
  • 27 篇 sanjeev khudanpu...
  • 21 篇 post matt
  • 20 篇 mcnamee paul
  • 20 篇 hermansky hynek
  • 20 篇 callison-burch c...
  • 19 篇 villalba jesús
  • 18 篇 povey daniel
  • 16 篇 duh kevin
  • 16 篇 mayfield james
  • 15 篇 zelasko piotr
  • 15 篇 daniel povey
  • 15 篇 watanabe shinji
  • 14 篇 wiesner matthew
  • 14 篇 andrews nicholas
  • 13 篇 paul michael j.
  • 13 篇 mccree alan

语言

  • 443 篇 英文
  • 15 篇 其他
检索条件"机构=Human Language Technology Center of Excellence and Center for Language and Speech Processing"
458 条 记 录,以下是391-400 订阅
排序:
High-temperature behavior of SiC power diodes
High-temperature behavior of SiC power diodes
收藏 引用
European Conference on Power Electronics and Applications
作者: Cyril Buttay Christophe Raynaud Hervé Morel Mihai Lazar Gabriel Civrac Dominique Bergogne Department of Electrical and Computer Engineering Johns Hopkins University Baltimore MD USA College of Information Science and Engineering Ritsumeikan University Shiga Japan Human Language Technology Center of Excellence Johns Hopkins University Baltimore MD USA
Silicon Carbide devices are in theory able to operate at very high temperatures, but many mechanisms actually lower the limit. In this paper we describe two of these mechanisms: the thermal run-away, and the ageing of... 详细信息
来源: 评论
Unsupervised model adaptation using information-theoretic criterion
Unsupervised model adaptation using information-theoretic cr...
收藏 引用
"2010 human language Technologies Conference ofthe North American Chapter of the Association for Computational Linguistics, NAACL HLT 2010"
作者: Rastrow, Ariya Jelinek, Frederick Sethy, Abhinav Ramabhadran, Bhuvana Human Language Technology Center of Excellence Center for Language and Speech Processing Johns Hopkins University United States IBM T.J. Watson Research Center Yorktown Heights NY United States
In this paper we propose a novel general framework for unsupervised model adaptation. Our method is based on entropy which has been used previously as a regularizer in semi-supervised learning. This technique includes... 详细信息
来源: 评论
We're not in kansas anymore: Detecting domain changes in streams
We're not in kansas anymore: Detecting domain changes in str...
收藏 引用
Conference on Empirical Methods in Natural language processing, EMNLP 2010
作者: Dredze, Mark Oates, Tim Piatko, Christine Human Language Technology Center of Excellence United States Center for Language and Speech Processing United States Applied Physics Lab. Johns Hopkins University United States University of Maryland Baltimore County United States
Domain adaptation, the problem of adapting a natural language processing system trained in one domain to perform well in a different domain, has received significant attention. This paper addresses an important proble... 详细信息
来源: 评论
Streaming cross document entity coreference resolution
Streaming cross document entity coreference resolution
收藏 引用
23rd International Conference on Computational Linguistics, Coling 2010
作者: Rao, Delip McNamee, Paul Dredze, Mark Human Language Technology Center of Excellence Johns Hopkins University United States
Previous research in cross-document entity coreference has generally been restricted to the offline scenario where the set of documents is provided in advance. As a consequence, the dominant approach is based on greed... 详细信息
来源: 评论
Non-expert correction of automatically generated relation annotations
Non-expert correction of automatically generated relation an...
收藏 引用
2010 Workshop on Creating speech and language Data with Amazon's Mechanical Turk, Mturk 2010 at the 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics: human language Technologies, NAACL-HLT 2010
作者: Gormley, Matthew R. Gerber, Adam Harper, Mary Dredze, Mark Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD21211 United States Center for Language and Speech Processing Johns Hopkins University BaltimoreMD21211 United States Laboratory for Computational Linguistics and Information Processing University of Maryland College ParkMD20742 United States
We explore a new way to collect human annotated relations in text using Amazon Mechanical Turk. Given a knowledge base of relations and a corpus, we identify sentences which mention both an entity and an attribute tha... 详细信息
来源: 评论
A spoken term detection framework for recovering out-of-vocabulary words using the web
A spoken term detection framework for recovering out-of-voca...
收藏 引用
作者: Parada, Carolina Sethy, Abhinav Dredze, Mark Jelinek, Frederick Human Language Technology Center of Excellence Center for Language and Speech Processing Johns Hopkins University 3400 N Charles Street Baltimore MD 21210 United States IBM TJ Watson Research Center New York NY 10598 United States
Vocabulary restrictions in large vocabulary continuous speech recognition (LVCSR) systems mean that out-of-vocabulary (OOV) words are lost in the output. However, OOV words tend to be information rich terms (often nam... 详细信息
来源: 评论
Model combination for speech recognition using empirical Bayes risk minimization
Model combination for speech recognition using empirical Bay...
收藏 引用
2010 IEEE Workshop on Spoken language technology, SLT 2010
作者: Deoras, Anoop Filimonov, Denis Harper, Mary Jelinek, Fred Center for Language and Speech Processing Johns Hopkins University Baltimore MD 21218 United States Human Language Technology Center of Excellence Johns Hopkins University Baltimore MD 21218 United States UMIACS Laboratory for Computational Linguistics and Information Processing University of Maryland College Park MD 20742 United States
In this paper, we explore the model combination problem for rescoring Automatic speech Recognition (ASR) hypotheses. We use minimum Empirical Bayes Risk for the optimization criterion and Deterministic Annealing techn... 详细信息
来源: 评论
Entity Disambiguation for Knowledge Base Population
Entity Disambiguation for Knowledge Base Population
收藏 引用
计算语言学第23届国际学术会议
作者: Mark Dredze Paul McNamee Delip Rao Adam Gerber Tim Finin Human Language Technology Center of Excellence Center for Language and Speech Processing Johns Hopkins University University of Maryland-Baltimore County
The integration of facts derived from information extraction systems into existing knowledge bases requires a system to disambiguate entity mentions in the *** is challenging due to issues such as non-uniform variatio... 详细信息
来源: 评论
Improving semantic role labeling with word sense
Improving semantic role labeling with word sense
收藏 引用
"2010 human language Technologies Conference ofthe North American Chapter of the Association for Computational Linguistics, NAACL HLT 2010"
作者: Che, Wanxiang Liu, Ting Li, Yongqiang Research Center for Information Retrieval MOE-Microsoft Key Laboratory of Natural Language Processing and Speech School of Computer Science and Technology 150001 China
Semantic role labeling (SRL) not only needs lexical and syntactic information, but also needs word sense information. However, because of the lack of corpus annotated with both word senses and semantic roles, there is... 详细信息
来源: 评论
Model combination for speech Recognition using Empirical Bayes Risk minimization
Model combination for Speech Recognition using Empirical Bay...
收藏 引用
IEEE Spoken language technology Workshop
作者: Anoop Deoras Denis Filimonov Mary Harper Fred Jelinek Center of Language and Speech Processing Johns Hopkins University Baltimore MD USA Human Language Technology Center of Excellence Johns Hopkins University Baltimore MD USA UMIACS Laboratory of Computational Linguistics and Information Processing University of Maryland College Park MD USA Center of Language and Speech Processing Human Language Technology Center of Excellence Johns Hopkins University Baltimore MD USA
In this paper, we explore the model combination problem for rescoring Automatic speech Recognition (ASR) hypotheses. We use minimum Empirical Bayes Risk for the optimization criterion and Deterministic Annealing techn... 详细信息
来源: 评论