咨询与建议

限定检索结果

文献类型

  • 329 篇 会议
  • 129 篇 期刊文献

馆藏范围

  • 458 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 322 篇 工学
    • 243 篇 计算机科学与技术...
    • 211 篇 软件工程
    • 99 篇 信息与通信工程
    • 27 篇 生物工程
    • 19 篇 控制科学与工程
    • 17 篇 电气工程
    • 17 篇 化学工程与技术
    • 14 篇 电子科学与技术(可...
    • 13 篇 仪器科学与技术
    • 11 篇 生物医学工程(可授...
    • 7 篇 机械工程
    • 7 篇 建筑学
    • 6 篇 安全科学与工程
    • 5 篇 土木工程
    • 5 篇 农业工程
  • 171 篇 理学
    • 122 篇 物理学
    • 59 篇 数学
    • 32 篇 生物学
    • 22 篇 统计学(可授理学、...
    • 17 篇 化学
    • 10 篇 系统科学
  • 78 篇 管理学
    • 69 篇 图书情报与档案管...
    • 6 篇 管理科学与工程(可...
  • 15 篇 医学
    • 13 篇 基础医学(可授医学...
    • 13 篇 临床医学
    • 8 篇 药学(可授医学、理...
    • 6 篇 公共卫生与预防医...
  • 9 篇 法学
    • 7 篇 社会学
  • 8 篇 文学
    • 6 篇 中国语言文学
    • 5 篇 外国语言文学
  • 6 篇 教育学
  • 5 篇 农学
  • 1 篇 经济学

主题

  • 47 篇 speech recogniti...
  • 31 篇 speech
  • 30 篇 training
  • 18 篇 acoustics
  • 14 篇 machine translat...
  • 13 篇 decoding
  • 12 篇 social networkin...
  • 12 篇 speaker recognit...
  • 11 篇 hidden markov mo...
  • 11 篇 computational mo...
  • 11 篇 semantics
  • 10 篇 conferences
  • 9 篇 speech processin...
  • 9 篇 computational li...
  • 9 篇 feature extracti...
  • 9 篇 embeddings
  • 8 篇 training data
  • 8 篇 natural language...
  • 8 篇 pipelines
  • 7 篇 lattices

机构

  • 88 篇 human language t...
  • 55 篇 human language t...
  • 43 篇 center for langu...
  • 21 篇 center for langu...
  • 20 篇 human language t...
  • 20 篇 human language t...
  • 18 篇 center for langu...
  • 15 篇 human language t...
  • 13 篇 center for langu...
  • 12 篇 human language t...
  • 11 篇 human language t...
  • 10 篇 johns hopkins un...
  • 9 篇 johns hopkins un...
  • 8 篇 human language t...
  • 7 篇 human language t...
  • 7 篇 department of co...
  • 7 篇 xiaomi corp.
  • 6 篇 computer and inf...
  • 6 篇 xiaomi corporati...
  • 6 篇 center for langu...

作者

  • 64 篇 dredze mark
  • 50 篇 khudanpur sanjee...
  • 43 篇 van durme benjam...
  • 30 篇 dehak najim
  • 27 篇 sanjeev khudanpu...
  • 21 篇 post matt
  • 20 篇 mcnamee paul
  • 20 篇 hermansky hynek
  • 20 篇 callison-burch c...
  • 19 篇 villalba jesús
  • 18 篇 povey daniel
  • 16 篇 duh kevin
  • 16 篇 mayfield james
  • 15 篇 zelasko piotr
  • 15 篇 daniel povey
  • 15 篇 watanabe shinji
  • 14 篇 wiesner matthew
  • 14 篇 andrews nicholas
  • 13 篇 paul michael j.
  • 13 篇 mccree alan

语言

  • 443 篇 英文
  • 15 篇 其他
检索条件"机构=Human Language Technology Center of Excellence and Center for Language and Speech Processing"
458 条 记 录,以下是401-410 订阅
排序:
We're not in Kansas anymore: detecting domain changes in streams  10
We're not in Kansas anymore: detecting domain changes in str...
收藏 引用
Proceedings of the 2010 Conference on Empirical Methods in Natural language processing
作者: Mark Dredze Tim Oates Christine Piatko Human Language Technology Center of Excellence and University of Maryland Baltimore County Human Language Technology Center of Excellence and Johns Hopkins University
Domain adaptation, the problem of adapting a natural language processing system trained in one domain to perform well in a different domain, has received significant attention. This paper addresses an important proble...
来源: 评论
Appropriately handled prosodic breaks help PCFG parsing
Appropriately handled prosodic breaks help PCFG parsing
收藏 引用
"2010 human language Technologies Conference ofthe North American Chapter of the Association for Computational Linguistics, NAACL HLT 2010"
作者: Huang, Zhongqiang Harper, Mary Laboratory for Computational Linguistics and Information Processing Institute for Advanced Computer Studies University of Maryland College Park MD United States Human Language Technology Center of Excellence Johns Hopkins University Baltimore MD United States
This paper investigates using prosodic information in the form of ToBI break indexes for parsing spontaneous speech. We revisit two previously studied approaches, one that hurt parsing performance and one that achieve... 详细信息
来源: 评论
Lessons learned in part-of-speech tagging of conversational speech
Lessons learned in part-of-speech tagging of conversational ...
收藏 引用
Conference on Empirical Methods in Natural language processing, EMNLP 2010
作者: Eidelman, Vladimir Huang, Zhongqiang Harper, Mary Laboratory for Computational Linguistics and Information Processing Institute for Advanced Computer Studies University of Maryland College Park MD United States Human Language Technology Center of Excellence Johns Hopkins University Baltimore MD United States
This paper examines tagging models for spontaneous English speech transcripts. We analyze the performance of state-of-the-art tagging models, either generative or discriminative, left-to-right or bidirectional, with o... 详细信息
来源: 评论
Sentence similarity-based source context modelling in PBSMT
Sentence similarity-based source context modelling in PBSMT
收藏 引用
International Conference on Asian language processing
作者: Haque, Rejwanul Naskar, Sudip Kumar Way, Andy Costa-Jussá, Marta R. Banchs, Rafael E. School of Computing Dublin City University CNGL Dublin 9 Ireland Barcelona Media Research Center Speech and Language Av. Diagonal 177 08018 Barcelona Spain Institute for Infocomm Research Human Language Technology A-STAR Singapore 138632 Singapore
Target phrase selection, a crucial component of the state-of-the-art phrase-based statistical machine translation (PBSMT) model, plays a key role in generating accurate translation hypotheses. Inspired by context-rich... 详细信息
来源: 评论
A phoneme recognition framework based on auditory spectro-temporal receptive fields
A phoneme recognition framework based on auditory spectro-te...
收藏 引用
作者: Thomas, Samuel Patil, Kailash Ganapathy, Sriram Mesgarani, Nima Hermansky, Hynek Department of Electrical and Computer Engineering Johns Hopkins University Baltimore United States Human Language Technology Center of Excellence Johns Hopkins University Baltimore United States
We propose to incorporate features derived using spectro-temporal receptive fields (STRFs) of neurons in the auditory cortex for phoneme recognition. Each of these STRFs is tuned to different auditory frequencies, sca... 详细信息
来源: 评论
Cross-lingual and multi-stream posterior features for low resource LVCSR systems
Cross-lingual and multi-stream posterior features for low re...
收藏 引用
作者: Thomas, Samuel Ganapathy, Sriram Hermansky, Hynek Department of Electrical and Computer Engineering Johns Hopkins University Baltimore United States Human Language Technology Center of Excellence Johns Hopkins University Baltimore United States
We investigate approaches for large vocabulary continuous speech recognition (LVCSR) system for new languages or new domains using limited amounts of transcribed training data. In these low resource conditions, the pe... 详细信息
来源: 评论
BALANCING FALSE ALARMS AND HITS IN SPOKEN TERM DETECTION
BALANCING FALSE ALARMS AND HITS IN SPOKEN TERM DETECTION
收藏 引用
IEEE International Conference on Acoustics, speech, and Signal processing
作者: Carolina Parada Abhinav Sethy Bhuvana Ramabhadran Human Language Technology Center of Excellence and Center for Language and Speech Processing Johns Hopkins University 3400 North Charles Street Baltimore MD 21210 USA IBM T.J. Watson Research Center Yorktown Heights N.Y. 10568 USA
This paper presents methods to improve retrieval of Out-Of-Vocabulary (OOV) terms in a Spoken Term Detection (STD) system. We demonstrate that automated tagging of OOV regions helps to reduce false alarms while incorp... 详细信息
来源: 评论
An evaluation of technologies for knowledge base population  7
An evaluation of technologies for knowledge base population
收藏 引用
7th International Conference on language Resources and Evaluation, LREC 2010
作者: McNamee, Paul Dang, Hoa Trang Simpson, Heather Schone, Patrick Strassel, Stephanie M. Johns Hopkins University Human Language Technology Center of Excellence United States National Institute of Standards and Technology United States Linguistic Data Consortium University of Pennsylvania United States US Department of Defens United States
Previous content extraction evaluations have neglected to address problems which complicate the incorporation of extracted information into an existing knowledge base. Previous question answering evaluations have like... 详细信息
来源: 评论
Annotating named entities in Twitter data with crowdsourcing
Annotating named entities in Twitter data with crowdsourcing
收藏 引用
2010 Workshop on Creating speech and language Data with Amazon's Mechanical Turk, Mturk 2010 at the 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics: human language Technologies, NAACL-HLT 2010
作者: Finin, Tim Murnane, Will Karandikar, Anand Keller, Nicholas Martineau, Justin Dredze, Mark Computer Science and Electrical Engineering University of Maryland Baltimore County BaltimoreMD21250 United States Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD21211 United States
We describe our experience using both Amazon Mechanical Turk (MTurk) and CrowdFlower to collect simple named entity annotations for Twitter status updates. Unlike most genres that have traditionally been the focus of ... 详细信息
来源: 评论
Using web-scale N-grams to improve base NP parsing performance
Using web-scale N-grams to improve base NP parsing performan...
收藏 引用
23rd International Conference on Computational Linguistics, Coling 2010
作者: Pitler, Emily Bergsma, Shane Lin, Dekang Church, Kenneth Computer and Information Science University of Pennsylvania United States Department of Computing Science University of Alberta Canada Google Inc. United States Human Language Technology Center of Excellence Johns Hopkins University United States
We use web-scale N-grams in a base NP parser that correctly analyzes 95.4% of the base NPs in natural text. Web-scale data improves performance. That is, there is no data like more data. Performance scales log-linearl... 详细信息
来源: 评论