咨询与建议

限定检索结果

文献类型

  • 328 篇 会议
  • 129 篇 期刊文献

馆藏范围

  • 457 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 320 篇 工学
    • 241 篇 计算机科学与技术...
    • 210 篇 软件工程
    • 98 篇 信息与通信工程
    • 27 篇 生物工程
    • 18 篇 控制科学与工程
    • 17 篇 化学工程与技术
    • 16 篇 电气工程
    • 14 篇 电子科学与技术(可...
    • 13 篇 仪器科学与技术
    • 11 篇 生物医学工程(可授...
    • 7 篇 机械工程
    • 7 篇 建筑学
    • 6 篇 安全科学与工程
    • 5 篇 土木工程
    • 5 篇 农业工程
  • 170 篇 理学
    • 122 篇 物理学
    • 58 篇 数学
    • 32 篇 生物学
    • 22 篇 统计学(可授理学、...
    • 17 篇 化学
    • 10 篇 系统科学
  • 78 篇 管理学
    • 69 篇 图书情报与档案管...
    • 6 篇 管理科学与工程(可...
  • 15 篇 医学
    • 13 篇 基础医学(可授医学...
    • 13 篇 临床医学
    • 8 篇 药学(可授医学、理...
    • 6 篇 公共卫生与预防医...
  • 9 篇 法学
    • 7 篇 社会学
  • 8 篇 文学
    • 6 篇 中国语言文学
    • 5 篇 外国语言文学
  • 6 篇 教育学
  • 5 篇 农学
  • 1 篇 经济学

主题

  • 47 篇 speech recogniti...
  • 31 篇 speech
  • 30 篇 training
  • 18 篇 acoustics
  • 14 篇 machine translat...
  • 13 篇 decoding
  • 12 篇 social networkin...
  • 12 篇 speaker recognit...
  • 11 篇 hidden markov mo...
  • 11 篇 computational mo...
  • 11 篇 semantics
  • 10 篇 conferences
  • 9 篇 speech processin...
  • 9 篇 computational li...
  • 9 篇 feature extracti...
  • 9 篇 embeddings
  • 8 篇 training data
  • 8 篇 natural language...
  • 8 篇 pipelines
  • 7 篇 lattices

机构

  • 88 篇 human language t...
  • 54 篇 human language t...
  • 43 篇 center for langu...
  • 21 篇 center for langu...
  • 20 篇 human language t...
  • 20 篇 human language t...
  • 18 篇 center for langu...
  • 15 篇 human language t...
  • 13 篇 center for langu...
  • 12 篇 human language t...
  • 11 篇 human language t...
  • 10 篇 johns hopkins un...
  • 9 篇 johns hopkins un...
  • 8 篇 human language t...
  • 7 篇 human language t...
  • 7 篇 department of co...
  • 7 篇 xiaomi corp.
  • 6 篇 computer and inf...
  • 6 篇 xiaomi corporati...
  • 6 篇 center for langu...

作者

  • 64 篇 dredze mark
  • 50 篇 khudanpur sanjee...
  • 43 篇 van durme benjam...
  • 30 篇 dehak najim
  • 27 篇 sanjeev khudanpu...
  • 21 篇 post matt
  • 20 篇 mcnamee paul
  • 20 篇 hermansky hynek
  • 20 篇 callison-burch c...
  • 19 篇 villalba jesús
  • 18 篇 povey daniel
  • 16 篇 duh kevin
  • 16 篇 mayfield james
  • 15 篇 zelasko piotr
  • 15 篇 daniel povey
  • 15 篇 watanabe shinji
  • 14 篇 wiesner matthew
  • 14 篇 andrews nicholas
  • 13 篇 paul michael j.
  • 13 篇 mccree alan

语言

  • 448 篇 英文
  • 9 篇 其他
检索条件"机构=Human Language Technology Center of Excellence and Center for Language and Speech Processing"
457 条 记 录,以下是71-80 订阅
排序:
Two-stage augmentation and adaptive CTC fusion for improved robustness of multi-stream end-to-end ASR
arXiv
收藏 引用
arXiv 2021年
作者: Li, Ruizhi Sell, Gregory Hermansky, Hynek Center for Language and Speech Processing Johns Hopkins University United States Human Language Technology Center of Excellence Johns Hopkins University United States
Performance degradation of an Automatic speech Recognition (ASR) system is commonly observed when the test acoustic condition is different from training. Hence, it is essential to make ASR systems robust against vario... 详细信息
来源: 评论
Unsupervised speech segmentation and variable rate representation learning using segmental contrastive predictive coding
arXiv
收藏 引用
arXiv 2021年
作者: Bhati, Saurabhchand Villalba, Jesús Zelasko, Piotr Moro-Velazquez, Laureano Dehak, Najim Center for Language and Speech Processing Johns Hopkins University United States Human Language Technology Center of Excellence Johns Hopkins University United States
Typically, unsupervised segmentation of speech into the phone and word-like units are treated as separate tasks and are often done via different methods which do not fully leverage the inter-dependence of the two task... 详细信息
来源: 评论
Overview of the TREC 2023 NeuCLIR Track
arXiv
收藏 引用
arXiv 2024年
作者: Lawrie, Dawn MacAvaney, Sean Mayfield, James McNamee, Paul Oard, Douglas W. Soldaini, Luca Yang, Eugene Johns Hopkins University Human Language Technology Center of Excellence United States University of Glasgow United Kingdom University of Maryland United States Allen Institute for AI
The principal goal of the TREC Neural Cross-language Information Retrieval (NeuCLIR) track is to study the impact of neural approaches to cross-language information retrieval. The track has created four collections, l... 详细信息
来源: 评论
Lhotse: A speech data representation library for the modern deep learning ecosystem
arXiv
收藏 引用
arXiv 2021年
作者: Zelasko, Piotr Povey, Daniel Trmal, Jan Khudanpur, Sanjeev Johns Hopkins University BaltimoreMD21216 United States Xiaomi China Center for Language and Speech Processing Human Language Technology Center of Excellence
speech data is notoriously difficult to work with due to a variety of codecs, lengths of recordings, and meta-data formats. We present Lhotse, a speech data representation library that draws upon lessons learned from ... 详细信息
来源: 评论
PQLM - MULTILINGUAL DECENTRALIZED PORTABLE QUANTUM language MODEL FOR PRIVACY PROTECTION
arXiv
收藏 引用
arXiv 2022年
作者: Li, Shuyue Stella Zhang, Xiangyu Zhou, Shu Shu, Hongchao Liang, Ruixing Liu, Hexin Garcia, Leibny Paola Center for Language and Speech Processing Johns Hopkins University United States Human Language Technology Center of Excellence Johns Hopkins University United States Department of Physics Hong Kong University of Science and Technology Hong Kong School of Electrical and Electronic Engineering Nanyang Technological University Singapore
With careful manipulation, malicious agents can reverse engineer private information encoded in pre-trained language models. Security concerns motivate the development of quantum pre-training. In this work, we propose... 详细信息
来源: 评论
Improving Reconstruction Loss Based Speaker Embedding in Unsupervised and Semi-Supervised Scenarios
Improving Reconstruction Loss Based Speaker Embedding in Uns...
收藏 引用
International Conference on Acoustics, speech, and Signal processing (ICASSP)
作者: Jaejin Cho Piotr Żelasko Jesús Villalba Najim Dehak Center for Language and Speech Processing Johns Hopkins University Baltimore MD USA Human Language Technology Center of Excellence Johns Hopkins University Baltimore MD USA
Text-to-speech (TTS) models trained to minimize the spectrogram reconstruction loss can learn speaker embeddings without explicit speaker identity supervision, unlike x-vector speaker identification (SID) systems. Lev... 详细信息
来源: 评论
Beyond Isolated Utterances: Conversational Emotion Recognition
Beyond Isolated Utterances: Conversational Emotion Recogniti...
收藏 引用
IEEE Workshop on Automatic speech Recognition and Understanding
作者: Raghavendra Pappagari Piotr Żelasko Jesús Villalba Laureano Moro-Velazquez Najim Dehak Center for Language and Speech Processing Johns Hopkins University Baltimore MD USA Human Language Technology Center of Excellence Johns Hopkins University Baltimore MD USA
speech emotion recognition is the task of recognizing the speaker's emotional state given a recording of their utterance. While most of the current approaches focus on inferring emotion from isolated utterances, w... 详细信息
来源: 评论
Multi-Class Spectral Clustering with Overlaps for Speaker Diarization
Multi-Class Spectral Clustering with Overlaps for Speaker Di...
收藏 引用
IEEE Spoken language technology Workshop
作者: Desh Raj Zili Huang Sanjeev Khudanpur Center for Language and Speech Processing The Johns Hopkins University Baltimore MD USA Human Language Technology Center of Excellence The Johns Hopkins University Baltimore MD USA
This paper describes a method for overlap-aware speaker diarization. Given an overlap detector and a speaker embedding extractor, our method performs spectral clustering of segments informed by the output of the overl... 详细信息
来源: 评论
Patapasco: A Python Framework for Cross-language Information Retrieval Experiments
arXiv
收藏 引用
arXiv 2022年
作者: Costello, Cash Yang, Eugene Lawrie, Dawn Mayfield, James Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD21211 United States
While there are high-quality software frameworks for information retrieval experimentation, they do not explicitly support cross-language information retrieval (CLIR). To fill this gap, we have created Patapsco, a Pyt... 详细信息
来源: 评论
What helps transformers recognize conversational structure? Importance of context, punctuation, and labels in dialog act recognition
arXiv
收藏 引用
arXiv 2021年
作者: Żelasko, Piotr Pappagari, Raghavendra Dehak, Najim Center of Language and Speech Processing Johns Hopkins University BaltimoreMD United States Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD United States
Dialog acts can be interpreted as the atomic units of a conversation, more fine-grained than utterances, characterized by a specific communicative function. The ability to structure a conversational transcript as a se...
来源: 评论