咨询与建议

限定检索结果

文献类型

  • 284 篇 会议
  • 101 篇 期刊文献

馆藏范围

  • 385 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 261 篇 工学
    • 192 篇 计算机科学与技术...
    • 176 篇 软件工程
    • 66 篇 信息与通信工程
    • 21 篇 机械工程
    • 19 篇 生物工程
    • 17 篇 控制科学与工程
    • 14 篇 电气工程
    • 14 篇 电子科学与技术(可...
    • 10 篇 光学工程
    • 9 篇 化学工程与技术
    • 7 篇 生物医学工程(可授...
    • 3 篇 仪器科学与技术
    • 3 篇 动力工程及工程热...
    • 2 篇 材料科学与工程(可...
    • 2 篇 土木工程
  • 163 篇 理学
    • 109 篇 物理学
    • 66 篇 数学
    • 36 篇 统计学(可授理学、...
    • 23 篇 生物学
    • 20 篇 系统科学
    • 10 篇 化学
    • 1 篇 地球物理学
  • 36 篇 管理学
    • 26 篇 图书情报与档案管...
    • 9 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 6 篇 法学
    • 5 篇 社会学
    • 1 篇 法学
  • 2 篇 文学
    • 2 篇 外国语言文学
    • 1 篇 中国语言文学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学
  • 1 篇 医学
  • 1 篇 艺术学

主题

  • 66 篇 speech recogniti...
  • 41 篇 training
  • 39 篇 hidden markov mo...
  • 29 篇 neural machine t...
  • 23 篇 machine translat...
  • 20 篇 decoding
  • 19 篇 handwriting reco...
  • 18 篇 computer aided l...
  • 16 篇 recurrent neural...
  • 15 篇 feature extracti...
  • 15 篇 transducers
  • 14 篇 vocabulary
  • 12 篇 databases
  • 12 篇 error analysis
  • 11 篇 speech
  • 10 篇 pattern recognit...
  • 10 篇 humans
  • 9 篇 training data
  • 9 篇 optimization
  • 9 篇 context

机构

  • 52 篇 human language t...
  • 40 篇 human language t...
  • 38 篇 apptek gmbh aach...
  • 32 篇 human language t...
  • 31 篇 human language t...
  • 23 篇 apptek gmbh aach...
  • 21 篇 human language t...
  • 16 篇 human language t...
  • 13 篇 human language t...
  • 12 篇 pattern recognit...
  • 10 篇 human language t...
  • 9 篇 spoken language ...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 6 篇 pattern recognit...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 5 篇 a2ia sa

作者

  • 213 篇 ney hermann
  • 82 篇 hermann ney
  • 61 篇 schlüter ralf
  • 22 篇 ralf schluter
  • 21 篇 ralf schlüter
  • 20 篇 wuebker joern
  • 18 篇 casacuberta fran...
  • 18 篇 zeyer albert
  • 18 篇 zhou wei
  • 16 篇 gao yingbo
  • 14 篇 kim yunsu
  • 14 篇 herold christian
  • 13 篇 mansour saab
  • 13 篇 zeineldeen moham...
  • 13 篇 patrick doetsch
  • 13 篇 peitz stephan
  • 13 篇 huck matthias
  • 12 篇 peris álvaro
  • 12 篇 peter jan-thorst...
  • 12 篇 michel wilfried

语言

  • 383 篇 英文
  • 1 篇 西班牙文
  • 1 篇 中文
检索条件"机构=Human Language Technology and Pattern"
385 条 记 录,以下是241-250 订阅
排序:
HMM VS. CTC FOR AUTOMATIC SPEECH RECOGNITION: COMPARISON BASED ON FULL-SUM TRAINING FROM SCRATCH
arXiv
收藏 引用
arXiv 2022年
作者: Raissi, Tina Zhou, Wei Berger, Simon Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Group Rwth Aachen University Germany AppTek GmbH Aachen Germany
In this work, we compare from-scratch sequence-level cross-entropy (full-sum) training of Hidden Markov Model (HMM) and Connectionist Temporal Classification (CTC) topologies for automatic speech recognition (ASR). Be... 详细信息
来源: 评论
Efficient retrieval augmented generation from unstructured knowledge for task-oriented dialog
arXiv
收藏 引用
arXiv 2021年
作者: Thulke, David Daheim, Nico Dugast, Christian Ney, Hermann Human Language Technology and Pattern Recognition Group RWTH Aachen University Germany AppTek GmbH Aachen Germany
This paper summarizes our work on the first track of the ninth Dialog System technology Challenge (DSTC 9), "Beyond Domain APIs: Task-oriented Conversational Modeling with Unstructured Knowledge Access". The... 详细信息
来源: 评论
ACOUSTIC MODELING OF SPEECH WAVEFORM BASED ON MULTI-RESOLUTION, NEURAL NETWORK SIGNAL PROCESSING
ACOUSTIC MODELING OF SPEECH WAVEFORM BASED ON MULTI-RESOLUTI...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Zoltán Tüske Ralf Schlüter Hermann Ney Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University 52056 Aachen Germany
Recently, several papers have demonstrated that neural networks (NN) are able to perform the feature extraction as part of the acoustic model. Motivated by the Gammatone feature extraction pipeline, in this paper we e... 详细信息
来源: 评论
A Comparison of Transformer and LSTM Encoder Decoder Models for ASR
A Comparison of Transformer and LSTM Encoder Decoder Models ...
收藏 引用
IEEE Workshop on Automatic Speech Recognition and Understanding
作者: Albert Zeyer Parnia Bahar Kazuki Irie Ralf Schlüter Hermann Ney AppTek GmbH Aachen Germany Human Language Technology and Pattern Recognition RWTH Aachen University Aachen Germany
We present competitive results using a Transformer encoder-decoder-attention model for end-to-end speech recognition needing less training time compared to a similarly performing LSTM model. We observe that the Transf... 详细信息
来源: 评论
Bagging by design for continuous Handwriting Recognition using multi-objective particle swarm optimization
Bagging by design for continuous Handwriting Recognition usi...
收藏 引用
International Conference on Document Analysis and Recognition
作者: Mahdi Hamdani Patrick Doetsch Hermann Ney Human Language Technology and Pattern Recognition Group - RWTH Aachen University Germany Spoken Language Processing Group LIMSI CNRS Paris France
Multiple classifier systems are used to improve baseline results using different strategies. Bagging by design improves standard bagging by the minimization of intersection between the different ensembles. This work p... 详细信息
来源: 评论
Task-oriented Document-Grounded Dialog Systems by HLTPR@RWTH for DSTC9 and DSTC10
arXiv
收藏 引用
arXiv 2023年
作者: Thulke, David Daheim, Nico Dugast, Christian Ney, Hermann Human Language Technology and Pattern Recognition Group RWTH Aachen University Germany AppTek GmbH Aachen Germany
This paper summarizes our contributions to the document-grounded dialog tasks at the 9th and 10th Dialog System technology Challenges (DSTC9 and DSTC10). In both iterations the task consists of three subtasks: first d... 详细信息
来源: 评论
MULTILINGUAL MRASTA FEATURES FOR LOW-RESOURCE KEYWORD SEARCH AND SPEECH RECOGNITION SYSTEMS
MULTILINGUAL MRASTA FEATURES FOR LOW-RESOURCE KEYWORD SEARCH...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Zoltan Tuske David Nolden Ralf Schluter Hermann Ney Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University 52056 Aachen Germany
This paper investigates the application of hierarchical MRASTA bottleneck (BN) features for under-resourced languages within the IARPA Babel project. Through multilingual training of Multilayer Perceptron (MLP) BN fea... 详细信息
来源: 评论
Cascaded span extraction and response generation for document-grounded dialog
arXiv
收藏 引用
arXiv 2021年
作者: Daheim, Nico Thulke, David Dugast, Christian Ney, Hermann Human Language Technology and Pattern Recognition Group RWTH Aachen University Germany AppTek GmbH Aachen Germany
This paper summarizes our entries to both subtasks of the first DialDoc shared task which focuses on the agent response prediction task in goal-oriented document-grounded dialogs. The task is split into two subtasks: ... 详细信息
来源: 评论
Comparing the Benefit of Synthetic Training Data for Various Automatic Speech Recognition Architectures
Comparing the Benefit of Synthetic Training Data for Various...
收藏 引用
IEEE Workshop on Automatic Speech Recognition and Understanding
作者: Nick Rossenbach Mohammad Zeineldeen Benedikt Hilmes Ralf Schlüter Hermann Ney Human Language Technology and Pattern Recognition RWTH Aachen University Aachen Germany AppTek GmbH Aachen Germany
Recent publications on automatic-speech-recognition (ASR) have a strong focus on attention encoder-decoder (AED) architectures which tend to suffer from over-fitting in low resource scenarios. One solution to tackle t... 详细信息
来源: 评论
Sign language Gesture Classification Using Neural Networks  4
Sign Language Gesture Classification Using Neural Networks
收藏 引用
4th International Conference on Advances in Speech and language Technologies for Iberian languages, IberSPEECH 2018
作者: Parcheta, Zuzanna Martínez-Hinarejos, Carlos-D. Sciling S.L. Carrer del Riu 321 Pinedo 46012 Spain Pattern Recognition and Human Language Technology Research Center Universitat Politècnica de València Camino de Vera s/n 46022 Spain
Recent studies have demonstrated the power of neural networks for different fields of artificial intelligence. In most fields, such as machine translation or speech recognition, neural networks outperform previously u... 详细信息
来源: 评论