咨询与建议

限定检索结果

文献类型

  • 284 篇 会议
  • 102 篇 期刊文献

馆藏范围

  • 386 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 262 篇 工学
    • 192 篇 计算机科学与技术...
    • 176 篇 软件工程
    • 66 篇 信息与通信工程
    • 21 篇 机械工程
    • 19 篇 生物工程
    • 17 篇 控制科学与工程
    • 14 篇 电气工程
    • 14 篇 电子科学与技术(可...
    • 10 篇 光学工程
    • 9 篇 化学工程与技术
    • 7 篇 生物医学工程(可授...
    • 3 篇 仪器科学与技术
    • 3 篇 动力工程及工程热...
    • 2 篇 材料科学与工程(可...
    • 2 篇 土木工程
  • 163 篇 理学
    • 109 篇 物理学
    • 66 篇 数学
    • 36 篇 统计学(可授理学、...
    • 23 篇 生物学
    • 20 篇 系统科学
    • 10 篇 化学
    • 1 篇 地球物理学
  • 37 篇 管理学
    • 27 篇 图书情报与档案管...
    • 10 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 6 篇 法学
    • 5 篇 社会学
    • 1 篇 法学
  • 2 篇 文学
    • 2 篇 外国语言文学
    • 1 篇 中国语言文学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学
  • 1 篇 医学
  • 1 篇 艺术学

主题

  • 66 篇 speech recogniti...
  • 41 篇 training
  • 39 篇 hidden markov mo...
  • 29 篇 neural machine t...
  • 23 篇 machine translat...
  • 20 篇 decoding
  • 19 篇 handwriting reco...
  • 18 篇 computer aided l...
  • 16 篇 recurrent neural...
  • 15 篇 feature extracti...
  • 15 篇 transducers
  • 14 篇 vocabulary
  • 12 篇 databases
  • 12 篇 error analysis
  • 11 篇 speech
  • 10 篇 pattern recognit...
  • 10 篇 humans
  • 9 篇 training data
  • 9 篇 optimization
  • 9 篇 context

机构

  • 52 篇 human language t...
  • 40 篇 human language t...
  • 38 篇 apptek gmbh aach...
  • 32 篇 human language t...
  • 31 篇 human language t...
  • 23 篇 apptek gmbh aach...
  • 21 篇 human language t...
  • 16 篇 human language t...
  • 13 篇 human language t...
  • 12 篇 pattern recognit...
  • 10 篇 human language t...
  • 9 篇 spoken language ...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 6 篇 pattern recognit...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 5 篇 a2ia sa

作者

  • 213 篇 ney hermann
  • 82 篇 hermann ney
  • 61 篇 schlüter ralf
  • 22 篇 ralf schluter
  • 21 篇 ralf schlüter
  • 20 篇 wuebker joern
  • 18 篇 casacuberta fran...
  • 18 篇 zeyer albert
  • 18 篇 zhou wei
  • 16 篇 gao yingbo
  • 14 篇 kim yunsu
  • 14 篇 herold christian
  • 13 篇 mansour saab
  • 13 篇 zeineldeen moham...
  • 13 篇 patrick doetsch
  • 13 篇 peitz stephan
  • 13 篇 huck matthias
  • 12 篇 peris álvaro
  • 12 篇 peter jan-thorst...
  • 12 篇 michel wilfried

语言

  • 384 篇 英文
  • 1 篇 西班牙文
  • 1 篇 中文
检索条件"机构=Human Language Technology and Pattern"
386 条 记 录,以下是251-260 订阅
排序:
Sign language Gesture Classification Using Neural Networks  4
Sign Language Gesture Classification Using Neural Networks
收藏 引用
4th International Conference on Advances in Speech and language Technologies for Iberian languages, IberSPEECH 2018
作者: Parcheta, Zuzanna Martínez-Hinarejos, Carlos-D. Sciling S.L. Carrer del Riu 321 Pinedo 46012 Spain Pattern Recognition and Human Language Technology Research Center Universitat Politècnica de València Camino de Vera s/n 46022 Spain
Recent studies have demonstrated the power of neural networks for different fields of artificial intelligence. In most fields, such as machine translation or speech recognition, neural networks outperform previously u... 详细信息
来源: 评论
Articulatory motivated acoustic features for speech recognition
Articulatory motivated acoustic features for speech recognit...
收藏 引用
9th European Conference on Speech Communication and technology
作者: Kocharov, Daniil Zolnay, András Schlüter, Ralf Ney, Hermann Department of Phonetics Faculty of Philology Saint-Petersburg State University 199034 Saint Petersburg Russia Human Language Technology and Pattern Recognition Lehrstuhl für Informatik VI Computer Science Department RWTH Aachen University 52056 Aachen Germany
In this paper, we consider the use of multiple acoustic features of the speech signal for continuous speech recognition. A novel articulatory motivated acoustic feature is introduced, namely the spectrum derivative fe... 详细信息
来源: 评论
Performance analysis of Neural Networks in combination with n-gram language models
Performance analysis of Neural Networks in combination with ...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Ilya Oparin Martin Sundermeyer Hermann Ney Jean-Luc Gauvain LIMSI CNRS Spoken Language Processing Group France Computer Science Department Human Language Technology and Pattern Recognition RWTH Aachen University Germany
Neural Network language models (NNLMs) have recently become an important complement to conventional n-gram language models (LMs) in speech-to-text systems. However, little is known about the behavior of NNLMs. The ana... 详细信息
来源: 评论
How Much Does Tokenization Affect Neural Machine Translation?  1
收藏 引用
20th International Conference on Computational Linguistics and Intelligent Text Processing, CICLing 2019
作者: Domingo, Miguel García-Martínez, Mercedes Helle, Alexandre Casacuberta, Francisco Herranz, Manuel Pattern Recognition and Human Language Technology Research Center Universitat Politècnica de València Camino de Vera s/n Valencia46022 Spain Pangeanic/B.I Europa PangeaMT Technologies Division Valencia Spain
Tokenization or segmentation is a wide concept that covers simple processes such as separating punctuation from words, or more sophisticated processes such as applying morphological knowledge. Neural Machine Translati... 详细信息
来源: 评论
Prediction of LSTM-RNN Full Context States as a Subtask for N-Gram Feedforward language Models
Prediction of LSTM-RNN Full Context States as a Subtask for ...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Kazuki Irie Zhihong Lei Ralf Schlüter Hermann Ney Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University D-52056 Aachen Germany
Long short-term memory (LSTM) recurrent neural network language models compress the full context of variable lengths into a fixed size vector. In this work, we investigate the task of predicting the LSTM hidden repres... 详细信息
来源: 评论
INVESTIGATION ON CROSS- AND MULTILINGUAL MLP FEATURES UNDER MATCHED AND MISMATCHED ACOUSTICAL CONDITIONS
INVESTIGATION ON CROSS- AND MULTILINGUAL MLP FEATURES UNDER ...
收藏 引用
IEEE International Conference on Acoustics, Speech, and Signal Processing
作者: Zoltan Tuske Joel Pinto Daniel Willett Ralf Schluter Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Nuance Communications Deutschland GmbH
In this paper, Multi Layer Perceptron (MLP) based multilingual bottleneck features are investigated for acoustic modeling in three languages -- German, French, and US English. We use a modified training algorithm to h... 详细信息
来源: 评论
Training language Models for Long-Span Cross-Sentence Evaluation
Training Language Models for Long-Span Cross-Sentence Evalua...
收藏 引用
IEEE Workshop on Automatic Speech Recognition and Understanding
作者: Kazuki Irie Albert Zeyer Ralf Schlüter Hermann Ney Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen Germany AppTek GmbH Aachen Germany
While recurrent neural networks can motivate cross-sentence language modeling and its application to automatic speech recognition (ASR), corresponding modifications of the training method for that end are rarely discu... 详细信息
来源: 评论
Moment-Based Image Normalization for Handwritten Text Recognition
Moment-Based Image Normalization for Handwritten Text Recogn...
收藏 引用
International Workshop on Frontiers in Handwriting Recognition
作者: Michal Kozielski Jens Forster Hermann Ney Human Language Technology and Pattern Recognition Group Chair of Computer Science 6 RWTH Aachen University Aachen Germany
In this paper, we extend the concept of moment-based normalization of images from digit recognition to the recognition of handwritten text. Image moments provide robust estimates for text characteristics such as size ... 详细信息
来源: 评论
Tight Integrated End-to-End Training for Cascaded Speech Translation
Tight Integrated End-to-End Training for Cascaded Speech Tra...
收藏 引用
IEEE Spoken language technology Workshop
作者: Parnia Bahar Tobias Bieschke Ralf Schlüter Hermann Ney Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen Germany AppTek GmbH Aachen Germany
A cascaded speech translation model relies on discrete and non-differentiable transcription, which provides a supervision signal from the source side and helps the transformation between source speech and target text.... 详细信息
来源: 评论
Two-Way Neural Machine Translation: A Proof of Concept for Bidirectional Translation Modeling Using a Two-Dimensional Grid
Two-Way Neural Machine Translation: A Proof of Concept for B...
收藏 引用
IEEE Spoken language technology Workshop
作者: Parnia Bahar Christopher Brix Hermann Ney Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen Germany AppTek GmbH Aachen Germany
Neural translation models have proven to be effective in capturing sufficient information from a source sentence and generating a high-quality target sentence. However, it is not easy to get the best effect for bidire... 详细信息
来源: 评论