咨询与建议

限定检索结果

文献类型

  • 284 篇 会议
  • 102 篇 期刊文献

馆藏范围

  • 386 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 262 篇 工学
    • 192 篇 计算机科学与技术...
    • 176 篇 软件工程
    • 66 篇 信息与通信工程
    • 21 篇 机械工程
    • 19 篇 生物工程
    • 17 篇 控制科学与工程
    • 14 篇 电气工程
    • 14 篇 电子科学与技术(可...
    • 10 篇 光学工程
    • 9 篇 化学工程与技术
    • 7 篇 生物医学工程(可授...
    • 3 篇 仪器科学与技术
    • 3 篇 动力工程及工程热...
    • 2 篇 材料科学与工程(可...
    • 2 篇 土木工程
  • 163 篇 理学
    • 109 篇 物理学
    • 66 篇 数学
    • 36 篇 统计学(可授理学、...
    • 23 篇 生物学
    • 20 篇 系统科学
    • 10 篇 化学
    • 1 篇 地球物理学
  • 37 篇 管理学
    • 27 篇 图书情报与档案管...
    • 10 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 6 篇 法学
    • 5 篇 社会学
    • 1 篇 法学
  • 2 篇 文学
    • 2 篇 外国语言文学
    • 1 篇 中国语言文学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学
  • 1 篇 医学
  • 1 篇 艺术学

主题

  • 66 篇 speech recogniti...
  • 41 篇 training
  • 39 篇 hidden markov mo...
  • 29 篇 neural machine t...
  • 23 篇 machine translat...
  • 20 篇 decoding
  • 19 篇 handwriting reco...
  • 18 篇 computer aided l...
  • 16 篇 recurrent neural...
  • 15 篇 feature extracti...
  • 15 篇 transducers
  • 14 篇 vocabulary
  • 12 篇 databases
  • 12 篇 error analysis
  • 11 篇 speech
  • 10 篇 pattern recognit...
  • 10 篇 humans
  • 9 篇 training data
  • 9 篇 optimization
  • 9 篇 context

机构

  • 52 篇 human language t...
  • 40 篇 human language t...
  • 38 篇 apptek gmbh aach...
  • 32 篇 human language t...
  • 31 篇 human language t...
  • 23 篇 apptek gmbh aach...
  • 21 篇 human language t...
  • 16 篇 human language t...
  • 13 篇 human language t...
  • 12 篇 pattern recognit...
  • 10 篇 human language t...
  • 9 篇 spoken language ...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 6 篇 pattern recognit...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 5 篇 a2ia sa

作者

  • 213 篇 ney hermann
  • 82 篇 hermann ney
  • 61 篇 schlüter ralf
  • 22 篇 ralf schluter
  • 21 篇 ralf schlüter
  • 20 篇 wuebker joern
  • 18 篇 casacuberta fran...
  • 18 篇 zeyer albert
  • 18 篇 zhou wei
  • 16 篇 gao yingbo
  • 14 篇 kim yunsu
  • 14 篇 herold christian
  • 13 篇 mansour saab
  • 13 篇 zeineldeen moham...
  • 13 篇 patrick doetsch
  • 13 篇 peitz stephan
  • 13 篇 huck matthias
  • 12 篇 peris álvaro
  • 12 篇 peter jan-thorst...
  • 12 篇 michel wilfried

语言

  • 384 篇 英文
  • 1 篇 西班牙文
  • 1 篇 中文
检索条件"机构=Human Language Technology and Pattern"
386 条 记 录,以下是271-280 订阅
排序:
Does Joint Training Really Help Cascaded Speech Translation?
arXiv
收藏 引用
arXiv 2022年
作者: Tran, Viet Anh Khoa Thulke, David Gao, Yingbo Herold, Christian Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
Currently, in speech translation, the straightforward approach - cascading a recognition system with a translation system - delivers state-of-the-art results. However, fundamental challenges such as error propagation ... 详细信息
来源: 评论
Successfully Applying the Stabilized Lottery Ticket Hypothesis to the Transformer Architecture
arXiv
收藏 引用
arXiv 2020年
作者: Brix, Christopher Bahar, Parnia Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
Sparse models require less memory for storage and enable a faster inference by reducing the necessary number of FLOPs. This is relevant both for time-critical and on-device computations using neural networks. The stab... 详细信息
来源: 评论
RETURNN as a generic flexible neural toolkit with application to translation and speech recognition
arXiv
收藏 引用
arXiv 2018年
作者: Zeyer, Albert Alkhouli, Tamer Ney, Hermann Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen Germany AppTek United States NNAISENSE Switzerland
We compare the fast training and decoding speed of RETURNN of attention models for translation, due to fast CUDA LSTM kernels, and a fast pure TensorFlow beam search decoder. We show that a layer-wise pretraining sche... 详细信息
来源: 评论
The RWTH Aachen Machine Translation System for WMT 2012  12
The RWTH Aachen Machine Translation System for WMT 2012
收藏 引用
Workshop on Statistical Machine Translation
作者: Matthias Huck Stephan Peitz Markus Freitag Malte Nuhn Hermann Ney Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University D-52056 Aachen Germany
This paper describes the statistical machine translation (SMT) systems developed at RWTH Aachen University for the translation task of the NAACL 2012 Seventh Workshop on Statistical Machine Translation (WMT 2012). We ... 详细信息
来源: 评论
Local system voting feature for machine translation system combination
arXiv
收藏 引用
arXiv 2017年
作者: Freitag, Markus Peter, Jan-Thorsten Peitz, Stephan Feng, Minwei Ney, Hermann Human Language Technology Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
In this paper, we enhance the traditional confusion network system combination approach with an additional model trained by a neural network. This work is motivated by the fact that the commonly used binary system vot... 详细信息
来源: 评论
On Search Strategies for Document-Level Neural Machine Translation
arXiv
收藏 引用
arXiv 2023年
作者: Herold, Christian Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
Compared to sentence-level systems, document-level neural machine translation (NMT) models produce a more consistent output across a document and are able to better resolve ambiguities within the input. There are many... 详细信息
来源: 评论
uniblock: Scoring and Filtering Corpus with Unicode Block Information
arXiv
收藏 引用
arXiv 2019年
作者: Gao, Yingbo Wang, Weiyue Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
The preprocessing pipelines in Natural language Processing usually involve a step of removing sentences consisted of illegal characters. The definition of illegal characters and the specific removal strategy depend on... 详细信息
来源: 评论
Online Learning for Neural Machine Translation Post-editing
arXiv
收藏 引用
arXiv 2017年
作者: Peris, Álvaro Cebrián, Luis Casacuberta, Francisco Pattern Recognition and Human Language Technology Research Center Universitat Politècnica de València València Spain
Neural machine translation has meant a revolution of the field. Nevertheless, post-editing the outputs of the system is mandatory for tasks requiring high translation quality. Post-editing offers a unique opportunity ... 详细信息
来源: 评论
Document-Level language Models for Machine Translation
arXiv
收藏 引用
arXiv 2023年
作者: Petrick, Frithjof Herold, Christian Petrushkov, Pavel Khadivi, Shahram Ney, Hermann eBay Inc. Aachen Germany Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen Germany
Despite the known limitations, most machine translation systems today still operate on the sentence-level. One reason for this is, that most parallel training data is only sentence-level aligned, without document-leve... 详细信息
来源: 评论
Active learning for interactive neural machine translation of data streams
arXiv
收藏 引用
arXiv 2018年
作者: Peris, Álvaro Casacuberta, Francisco Pattern Recognition and Human Language Technology Research Center Universitat Politècnica de València València Spain
We study the application of active learning techniques to the translation of unbounded data streams via interactive neural machine translation. The main idea is to select, from an unbounded stream of source sentences,... 详细信息
来源: 评论