咨询与建议

限定检索结果

文献类型

  • 284 篇 会议
  • 102 篇 期刊文献

馆藏范围

  • 386 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 262 篇 工学
    • 192 篇 计算机科学与技术...
    • 176 篇 软件工程
    • 66 篇 信息与通信工程
    • 21 篇 机械工程
    • 19 篇 生物工程
    • 17 篇 控制科学与工程
    • 14 篇 电气工程
    • 14 篇 电子科学与技术(可...
    • 10 篇 光学工程
    • 9 篇 化学工程与技术
    • 7 篇 生物医学工程(可授...
    • 3 篇 仪器科学与技术
    • 3 篇 动力工程及工程热...
    • 2 篇 材料科学与工程(可...
    • 2 篇 土木工程
  • 163 篇 理学
    • 109 篇 物理学
    • 66 篇 数学
    • 36 篇 统计学(可授理学、...
    • 23 篇 生物学
    • 20 篇 系统科学
    • 10 篇 化学
    • 1 篇 地球物理学
  • 37 篇 管理学
    • 27 篇 图书情报与档案管...
    • 10 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 6 篇 法学
    • 5 篇 社会学
    • 1 篇 法学
  • 2 篇 文学
    • 2 篇 外国语言文学
    • 1 篇 中国语言文学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学
  • 1 篇 医学
  • 1 篇 艺术学

主题

  • 66 篇 speech recogniti...
  • 41 篇 training
  • 39 篇 hidden markov mo...
  • 29 篇 neural machine t...
  • 23 篇 machine translat...
  • 20 篇 decoding
  • 19 篇 handwriting reco...
  • 18 篇 computer aided l...
  • 16 篇 recurrent neural...
  • 15 篇 feature extracti...
  • 15 篇 transducers
  • 14 篇 vocabulary
  • 12 篇 databases
  • 12 篇 error analysis
  • 11 篇 speech
  • 10 篇 pattern recognit...
  • 10 篇 humans
  • 9 篇 training data
  • 9 篇 optimization
  • 9 篇 context

机构

  • 52 篇 human language t...
  • 40 篇 human language t...
  • 38 篇 apptek gmbh aach...
  • 32 篇 human language t...
  • 31 篇 human language t...
  • 23 篇 apptek gmbh aach...
  • 21 篇 human language t...
  • 16 篇 human language t...
  • 13 篇 human language t...
  • 12 篇 pattern recognit...
  • 10 篇 human language t...
  • 9 篇 spoken language ...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 6 篇 pattern recognit...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 5 篇 a2ia sa

作者

  • 213 篇 ney hermann
  • 82 篇 hermann ney
  • 61 篇 schlüter ralf
  • 22 篇 ralf schluter
  • 21 篇 ralf schlüter
  • 20 篇 wuebker joern
  • 18 篇 casacuberta fran...
  • 18 篇 zeyer albert
  • 18 篇 zhou wei
  • 16 篇 gao yingbo
  • 14 篇 kim yunsu
  • 14 篇 herold christian
  • 13 篇 mansour saab
  • 13 篇 zeineldeen moham...
  • 13 篇 patrick doetsch
  • 13 篇 peitz stephan
  • 13 篇 huck matthias
  • 12 篇 peris álvaro
  • 12 篇 peter jan-thorst...
  • 12 篇 michel wilfried

语言

  • 384 篇 英文
  • 1 篇 西班牙文
  • 1 篇 中文
检索条件"机构=Human Language Technology and Pattern"
386 条 记 录,以下是21-30 订阅
排序:
Improving statistical machine translation with word class models
Improving statistical machine translation with word class mo...
收藏 引用
2013 Conference on Empirical Methods in Natural language Processing, EMNLP 2013
作者: Wuebker, Joern Peitz, Stephan Rietig, Felix Ney, Hermann Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen Germany
Automatically clustering words from a monolingual or bilingual training corpus into classes is a widely used technique in statistical natural language processing. We present a very simple and easy to implement method ... 详细信息
来源: 评论
A comparison between count and neural network models based on joint translation and reordering sequences
A comparison between count and neural network models based o...
收藏 引用
Conference on Empirical Methods in Natural language Processing, EMNLP 2015
作者: Guta, Andreas Alkhouli, Tamer Peter, Jan-Thorsten Wuebker, Joern Ney, Hermann Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen Germany
We propose a conversion of bilingual sentence pairs and the corresponding word alignments into novel linear sequences. These are joint translation and reordering (JTR) uniquely defined sequences, combining interdepend... 详细信息
来源: 评论
Investigations on phrase-based decoding with recurrent neural network language and translation models  10
Investigations on phrase-based decoding with recurrent neura...
收藏 引用
10th Workshop on Statistical Machine Translation, WMT 2015 at the 2015 Conference on Empirical Methods in Natural language Processing, EMNLP 2015
作者: Alkhouli, Tamer Rietig, Felix Ney, Hermann Human Language Technology and Pattern Recognition Group Rwth Aachen University Aachen Germany
This work explores the application of recurrent neural network (RNN) language and translation models during phrasebased decoding. Due to their use of unbounded context, the decoder integration of RNNs is more challeng... 详细信息
来源: 评论
Deep fisher faces  28
Deep fisher faces
收藏 引用
28th British Machine Vision Conference, BMVC 2017
作者: Hanselmann, Harald Yan, Shen Ney, Hermann Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen Germany
Most current state-of-the-art methods for unconstrained face recognition use deep convolutional neural networks. Recently, it has been proposed to augment the typically used softmax cross-entropy loss by adding a cent... 详细信息
来源: 评论
When and why is document-level context useful in neural machine translation?  4
When and why is document-level context useful in neural mach...
收藏 引用
4th Workshop on Discourse in Machine Translation, DiscoMT@EMNLP 2019
作者: Kim, Yunsu Tran, Duc Thanh Ney, Hermann Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen Germany
Document-level context has received lots of attention for compensating neural machine translation (NMT) of isolated sentences. However, recent advances in document-level NMT focus on sophisticated integration of the c... 详细信息
来源: 评论
When and Why is Unsupervised Neural Machine Translation Useless?  22
When and Why is Unsupervised Neural Machine Translation Usel...
收藏 引用
22nd Annual Conference of the European Association for Machine Translation, EAMT 2020
作者: Kim, Yunsu Graça, Miguel Ney, Hermann Human Language Technology and Pattern Recognition Group Rwth Aachen University Aachen Germany
This paper studies the practicality of the current state-of-the-art unsupervised methods in neural machine translation (NMT). In ten translation tasks with various data settings, we analyze the conditions under which ... 详细信息
来源: 评论
FIRE in ImageCLEF 2007
FIRE in ImageCLEF 2007
收藏 引用
2007 Cross language Evaluation Forum Workshop, CLEF 2007, co-located with the 11th European Conference on Digital Libraries, ECDL 2007
作者: Deselaers, Thomas Gass, Tobias Weyand, Tobias Ney, Hermann Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen Germany
We present the methods we applied in the four different tasks of the ImageCLEF 2007 content-based image retrieval evaluation. We participated in all four tasks using a variety of methods. Global and local image descri... 详细信息
来源: 评论
Lexicon Models for Hierarchical Phrase-Based Machine Translation  8
Lexicon Models for Hierarchical Phrase-Based Machine Transla...
收藏 引用
8th International Workshop on Spoken language Translation, IWSLT 2011
作者: Huck, Matthias Mansour, Saab Wiesler, Simon Ney, Hermann Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen Germany
In this paper, we investigate lexicon models for hierarchical phrase-based statistical machine translation. We study five types of lexicon models: a model which is extracted from word-aligned training data and-given t... 详细信息
来源: 评论
Tracking benchmark databases for video-based sign language recognition
Tracking benchmark databases for video-based sign language r...
收藏 引用
11th European Conference on Computer Vision, ECCV 2010
作者: Dreuw, Philippe Forster, Jens Ney, Hermann Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen Germany
A survey of video databases that can be used within a continuous sign language recognition scenario to measure the performance of head and hand tracking algorithms either w.r.t. a tracking error rate or w.r.t. a word ... 详细信息
来源: 评论
Spoken language processing techniques for sign language recognition and translation
收藏 引用
technology and Disability 2008年 第2期20卷 121-133页
作者: Dreuw, Philippe Stein, Daniel Deselaers, Thomas Rybach, David Zahedi, Morteza Bungeroth, Jan Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department 6 RWTH Aachen University Aachen Germany
We present an approach to automatically recognize sign language and translate it into a spoken language. A system to address these tasks is created based on state-of-the-art techniques from statistical machine transla...
来源: 评论