咨询与建议

限定检索结果

文献类型

  • 284 篇 会议
  • 102 篇 期刊文献

馆藏范围

  • 386 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 262 篇 工学
    • 192 篇 计算机科学与技术...
    • 176 篇 软件工程
    • 66 篇 信息与通信工程
    • 21 篇 机械工程
    • 19 篇 生物工程
    • 17 篇 控制科学与工程
    • 14 篇 电气工程
    • 14 篇 电子科学与技术(可...
    • 10 篇 光学工程
    • 9 篇 化学工程与技术
    • 7 篇 生物医学工程(可授...
    • 3 篇 仪器科学与技术
    • 3 篇 动力工程及工程热...
    • 2 篇 材料科学与工程(可...
    • 2 篇 土木工程
  • 163 篇 理学
    • 109 篇 物理学
    • 66 篇 数学
    • 36 篇 统计学(可授理学、...
    • 23 篇 生物学
    • 20 篇 系统科学
    • 10 篇 化学
    • 1 篇 地球物理学
  • 37 篇 管理学
    • 27 篇 图书情报与档案管...
    • 10 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 6 篇 法学
    • 5 篇 社会学
    • 1 篇 法学
  • 2 篇 文学
    • 2 篇 外国语言文学
    • 1 篇 中国语言文学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学
  • 1 篇 医学
  • 1 篇 艺术学

主题

  • 66 篇 speech recogniti...
  • 41 篇 training
  • 39 篇 hidden markov mo...
  • 29 篇 neural machine t...
  • 23 篇 machine translat...
  • 20 篇 decoding
  • 19 篇 handwriting reco...
  • 18 篇 computer aided l...
  • 16 篇 recurrent neural...
  • 15 篇 feature extracti...
  • 15 篇 transducers
  • 14 篇 vocabulary
  • 12 篇 databases
  • 12 篇 error analysis
  • 11 篇 speech
  • 10 篇 pattern recognit...
  • 10 篇 humans
  • 9 篇 training data
  • 9 篇 optimization
  • 9 篇 context

机构

  • 52 篇 human language t...
  • 40 篇 human language t...
  • 38 篇 apptek gmbh aach...
  • 32 篇 human language t...
  • 31 篇 human language t...
  • 23 篇 apptek gmbh aach...
  • 21 篇 human language t...
  • 16 篇 human language t...
  • 13 篇 human language t...
  • 12 篇 pattern recognit...
  • 10 篇 human language t...
  • 9 篇 spoken language ...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 6 篇 pattern recognit...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 5 篇 a2ia sa

作者

  • 213 篇 ney hermann
  • 82 篇 hermann ney
  • 61 篇 schlüter ralf
  • 22 篇 ralf schluter
  • 21 篇 ralf schlüter
  • 20 篇 wuebker joern
  • 18 篇 casacuberta fran...
  • 18 篇 zeyer albert
  • 18 篇 zhou wei
  • 16 篇 gao yingbo
  • 14 篇 kim yunsu
  • 14 篇 herold christian
  • 13 篇 mansour saab
  • 13 篇 zeineldeen moham...
  • 13 篇 patrick doetsch
  • 13 篇 peitz stephan
  • 13 篇 huck matthias
  • 12 篇 peris álvaro
  • 12 篇 peter jan-thorst...
  • 12 篇 michel wilfried

语言

  • 384 篇 英文
  • 1 篇 西班牙文
  • 1 篇 中文
检索条件"机构=Human Language Technology and Pattern"
386 条 记 录,以下是71-80 订阅
排序:
Lightly-Supervised Training for Hierarchical Phrase-Based Machine Translation  1
Lightly-Supervised Training for Hierarchical Phrase-Based Ma...
收藏 引用
1st Workshop on Unsupervised Learning in NLP at the 2011 Conference on Empirical Methods in Natural language Processing, EMNLP 2011
作者: Huck, Matthias Vilar, David Stein, Daniel Ney, Hermann Human Language Technology and Pattern Recognition Group RWTH Aachen University Germany DFKI GmbH Berlin Germany
In this paper we apply lightly-supervised training to a hierarchical phrase-based statistical machine translation system. We employ bitexts that have been built by automatically translating large amounts of monolingua... 详细信息
来源: 评论
Improving Continuous Sign language Recognition: Speech Recognition Techniques and System Design  4
Improving Continuous Sign Language Recognition: Speech Recog...
收藏 引用
4th Workshop on Speech and language Processing for Assistive Technologies, SLPAT 2013
作者: Forster, Jens Koller, Oscar Oberdorfer, Christian Gweth, Yannick Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University Aachen Germany
Automatic sign language recognition (ASLR) is a special case of automatic speech recognition (ASR) and computer vision (CV) and is currently evolving from using artificial labgenerated data to using 'real-life'... 详细信息
来源: 评论
Non-Stationary Signal Processing and its Application in Speech Recognition
Non-Stationary Signal Processing and its Application in Spee...
收藏 引用
2012 SAPA-SCALE Conference
作者: Tüske, Zoltán Drepper, Friedhelm R. Schlüter, Ralf Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52056 Germany
The most widely used acoustic feature extraction methods of current automatic speech recognition (ASR) systems are based on the assumption of stationarity. In this paper we extensively evaluate a recently introduced f... 详细信息
来源: 评论
Extraction methods of voicing feature for robust speech recognition  8
Extraction methods of voicing feature for robust speech reco...
收藏 引用
8th European Conference on Speech Communication and technology, EUROSPEECH 2003
作者: Zolnay, András Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Department of Computer Science VI RWTH Aachen - University of Technology Aachen52056 Germany
In this paper, three different voicing features are studied as additional acoustic features for continuous speech recognition. The harmonic product spectrum based feature is extracted in frequency domain while the aut... 详细信息
来源: 评论
Advancements in Arabic-to-English hierarchical machine translation
Advancements in Arabic-to-English hierarchical machine trans...
收藏 引用
15th International Conference of the European Association for Machine Translation, EAMT 2011
作者: Huck, Matthias Vilar, David Stein, Daniel Ney, Hermann Human Language Technology and Pattern Recognition Group RWTH Aachen University Germany DFKI GmbH Berlin Germany
In this paper we study several advanced techniques and models for Arabic-to-English statistical machine translation. We examine how the challenges imposed by this particular language pair and translation direction can... 详细信息
来源: 评论
Interactive-Predictive Neural Multimodal Systems  9th
Interactive-Predictive Neural Multimodal Systems
收藏 引用
9th Iberian Conference on pattern Recognition and Image Analysis, IbPRIA 2019
作者: Peris, Álvaro Casacuberta, Francisco Pattern Recognition and Human Language Technology Research Center Universitat Politècnica de València Valencia Spain
Despite the advances achieved by neural models in sequence to sequence learning, exploited in a variety of tasks, they still make errors. In many use cases, these are corrected by a human expert in a posterior revisio... 详细信息
来源: 评论
Interactive-predictive translation based on multiple word-segments  19
Interactive-predictive translation based on multiple word-se...
收藏 引用
19th Annual Conference of the European Association for Machine Translation, EAMT 2016
作者: Domingo, Miguel Peris, Álvaro Casacuberta, Francisco Pattern Recognition and Human Language Technology Research Center Camino de Vera s/n Valencia46022 Spain
Current machine translation systems require human revision to produce high-quality translations. This is achieved through a post-editing process or by means of an interactive human-computer collaboration. Most protoco... 详细信息
来源: 评论
Investigation of mixture splitting concept for training linear bottlenecks of deep neural network acoustic models  40
Investigation of mixture splitting concept for training line...
收藏 引用
40th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2015
作者: Tahir, Muhammad Ali Wiesler, Simon Schluter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Germany Spoken Language Processing Group LIMSI CNRS Paris France
A Gaussian or log-linear mixture model trained by maximum likelihood may be trained further using discriminative training. It is desirable that the mixture splitting is also done during the discriminative training, to... 详细信息
来源: 评论
Statistical machine translation and its challenges  8
Statistical machine translation and its challenges
收藏 引用
8th International Conference on Spoken language Processing, ICSLP 2004
作者: Ney, Hermann Lehrstuhl für Informatik VI Human Language Technology and Pattern Recognition RWTH Aachen - University of Technology AachenD-52056 Germany
In addition to speech recognition and syntactic parsing, during the last 10 years, the statistical approach has found widespread use in machine translation of both written language and spoken language. In many compara... 详细信息
来源: 评论
The RWTH Aachen University English-German and German-English Unsupervised Neural Machine Translation Systems for WMT 2018  3
The RWTH Aachen University English-German and German-English...
收藏 引用
3rd Conference on Machine Translation, WMT 2018 at the Conference on Empirical Methods in Natural language Processing, EMNLP 2018
作者: Graça, Miguel Kim, Yunsu Schamper, Julian Geng, Jiahui Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
This paper describes the unsupervised neural machine translation (NMT) systems of the RWTH Aachen University developed for the English ↔ German news translation task of the EMNLP 2018 Third Conference on Machine Trans... 详细信息
来源: 评论