咨询与建议

限定检索结果

文献类型

  • 281 篇 会议
  • 102 篇 期刊文献

馆藏范围

  • 383 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 261 篇 工学
    • 192 篇 计算机科学与技术...
    • 176 篇 软件工程
    • 66 篇 信息与通信工程
    • 20 篇 机械工程
    • 19 篇 生物工程
    • 17 篇 控制科学与工程
    • 14 篇 电气工程
    • 14 篇 电子科学与技术(可...
    • 10 篇 光学工程
    • 9 篇 化学工程与技术
    • 7 篇 生物医学工程(可授...
    • 3 篇 仪器科学与技术
    • 3 篇 动力工程及工程热...
    • 2 篇 材料科学与工程(可...
    • 2 篇 土木工程
  • 163 篇 理学
    • 109 篇 物理学
    • 66 篇 数学
    • 36 篇 统计学(可授理学、...
    • 23 篇 生物学
    • 20 篇 系统科学
    • 10 篇 化学
    • 1 篇 地球物理学
  • 37 篇 管理学
    • 27 篇 图书情报与档案管...
    • 10 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 6 篇 法学
    • 5 篇 社会学
    • 1 篇 法学
  • 2 篇 文学
    • 2 篇 外国语言文学
    • 1 篇 中国语言文学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学
  • 1 篇 医学
  • 1 篇 艺术学

主题

  • 66 篇 speech recogniti...
  • 40 篇 training
  • 38 篇 hidden markov mo...
  • 29 篇 neural machine t...
  • 23 篇 machine translat...
  • 20 篇 decoding
  • 19 篇 handwriting reco...
  • 18 篇 computer aided l...
  • 16 篇 recurrent neural...
  • 15 篇 feature extracti...
  • 15 篇 transducers
  • 14 篇 vocabulary
  • 12 篇 databases
  • 12 篇 error analysis
  • 11 篇 speech
  • 10 篇 pattern recognit...
  • 10 篇 humans
  • 9 篇 training data
  • 9 篇 optimization
  • 9 篇 context

机构

  • 52 篇 human language t...
  • 40 篇 human language t...
  • 38 篇 apptek gmbh aach...
  • 32 篇 human language t...
  • 31 篇 human language t...
  • 23 篇 apptek gmbh aach...
  • 21 篇 human language t...
  • 16 篇 human language t...
  • 13 篇 human language t...
  • 12 篇 pattern recognit...
  • 10 篇 human language t...
  • 9 篇 spoken language ...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 6 篇 pattern recognit...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 5 篇 a2ia sa

作者

  • 212 篇 ney hermann
  • 80 篇 hermann ney
  • 61 篇 schlüter ralf
  • 22 篇 ralf schluter
  • 21 篇 ralf schlüter
  • 20 篇 wuebker joern
  • 18 篇 casacuberta fran...
  • 18 篇 zeyer albert
  • 18 篇 zhou wei
  • 16 篇 gao yingbo
  • 14 篇 kim yunsu
  • 14 篇 herold christian
  • 13 篇 mansour saab
  • 13 篇 zeineldeen moham...
  • 13 篇 patrick doetsch
  • 13 篇 peitz stephan
  • 13 篇 huck matthias
  • 12 篇 peris álvaro
  • 12 篇 peter jan-thorst...
  • 12 篇 michel wilfried

语言

  • 381 篇 英文
  • 1 篇 西班牙文
  • 1 篇 中文
检索条件"机构=Human Language Technology and Pattern Recognition"
383 条 记 录,以下是111-120 订阅
排序:
Discriminative reordering extensions for hierarchical phrase-based machine translation  16
Discriminative reordering extensions for hierarchical phrase...
收藏 引用
16th Annual Conference of the European Association for Machine Translation, EAMT 2012
作者: Huck, Matthias Peitz, Stephan Freitag, Markus Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
In this paper, we propose novel extensions of hierarchical phrase-based systems with a discriminative lexicalized reordering model. We compare different feature sets for the discriminative reordering model and investi... 详细信息
来源: 评论
Investigation of mixture splitting concept for training linear bottlenecks of deep neural network acoustic models  40
Investigation of mixture splitting concept for training line...
收藏 引用
40th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2015
作者: Tahir, Muhammad Ali Wiesler, Simon Schluter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Germany Spoken Language Processing Group LIMSI CNRS Paris France
A Gaussian or log-linear mixture model trained by maximum likelihood may be trained further using discriminative training. It is desirable that the mixture splitting is also done during the discriminative training, to... 详细信息
来源: 评论
Soft String-to-Dependency Hierarchical Machine Translation  8
Soft String-to-Dependency Hierarchical Machine Translation
收藏 引用
8th International Workshop on Spoken language Translation, IWSLT 2011
作者: Peter, Jan-Thorsten Huck, Matthias Ney, Hermann Stein, Daniel Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen Germany Fraunhofer IAIS St. Augustin Germany
In this paper, we dissect the influence of several target-side dependency-based extensions to hierarchical machine translation, including a dependency language model (LM). We pursue a non-restrictive approach that doe... 详细信息
来源: 评论
Improved strategies for a zero oov rate LVCSR system  40
Improved strategies for a zero oov rate LVCSR system
收藏 引用
40th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2015
作者: Shaik, M. Ali Basha Mousa, Amr El-Desoky Hahn, Stefan Schluter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition - Computer Science Department RWTH Aachen University Aachen Germany Spoken Language Processing Group LIMSI CNRS Paris France
In this work, multiple hierarchical language modeling strategies for a zero OOV rate large vocabulary continuous speech recognition system are investigated. In our previously proposed hierarchical approach, a full-wor... 详细信息
来源: 评论
Improved Chunk-level Reordering for Statistical Machine Translation  4
Improved Chunk-level Reordering for Statistical Machine Tran...
收藏 引用
4th International Workshop on Spoken language Translation, IWSLT 2007
作者: Zhang, Yuqi Zens, Richard Ney, Hermann Human Language Technology and Pattern Recognition Lehrstuhl für Informatik 6 Computer Science Department RWTH Aachen University Germany
Inspired by previous chunk-level reordering approaches to statistical machine translation, this paper presents two methods to improve the reordering at the chunk level. By introducing a new lattice weighting factor an... 详细信息
来源: 评论
Investigations on sequence training of neural networks  40
Investigations on sequence training of neural networks
收藏 引用
40th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2015
作者: Wiesler, Simon Golik, Pavel Schluter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany LIMSI CNRS Spoken Language Processing Group Paris France
In this paper we present an investigation of sequence-discriminative training of deep neural networks for automatic speech recognition. We evaluate different sequence-discriminative training criteria (MMI and MPE) and... 详细信息
来源: 评论
Sequence-discriminative training of recurrent neural networks  40
Sequence-discriminative training of recurrent neural network...
收藏 引用
40th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2015
作者: Voigtlaender, Paul Doetsch, Patrick Wiesler, Simon Schluter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany LIMSI CNRS Spoken Language Processing Group Paris France
We investigate sequence-discriminative training of long shortterm memory recurrent neural networks using the maximum mutual information criterion. We show that although recurrent neural networks already make use of th... 详细信息
来源: 评论
Feature-rich sub-lexical language models using a maximum entropy approach for German LVCSR
Feature-rich sub-lexical language models using a maximum ent...
收藏 引用
14th Annual Conference of the International Speech Communication Association, INTERSPEECH 2013
作者: Shaik, M. Ali Basha El-Desoky Mousa, Amr Schlüter, Ralf Ney, Hermann Computer Science Department Human Language Technology and Pattern Recognition RWTH Aachen University Aachen Germany Spoken Language Processing Group LIMSI CNRS Paris France
German is a morphologically rich language having a high degree of word inflections, derivations and compounding. This leads to high out-of-vocabulary (OOV) rates and poor language model (LM) probabilities in the large... 详细信息
来源: 评论
Morpheme level hierarchical pitman-Yor class-based language models for LVCSR of morphologically rich languages
Morpheme level hierarchical pitman-Yor class-based language ...
收藏 引用
14th Annual Conference of the International Speech Communication Association, INTERSPEECH 2013
作者: El-Desoky Mousa, Amr Shaik, M. Ali Basha Schlüter, Ralf Ney, Hermann Computer Science Department Human Language Technology and Pattern Recognition RWTH Aachen University Aachen Germany Spoken Language Processing Group LIMSI CNRS Paris France
Performing large vocabulary continuous speech recognition (LVCSR) for morphologically rich languages is considered a challenging task. The morphological richness of such languages leads to high out-of-vocabulary (OOV)... 详细信息
来源: 评论
RWTHLM - The RWTH Aachen University neural network language modeling toolkit  15
RWTHLM - The RWTH Aachen University neural network language ...
收藏 引用
15th Annual Conference of the International Speech Communication Association: Celebrating the Diversity of Spoken languages, INTERSPEECH 2014
作者: Sundermeyer, Martin Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany Spoken Language Processing Group LIMSI CNRS Paris France
We present a novel toolkit that implements the long short-term memory (LSTM) neural network concept for language modeling. The main goal is to provide a software which is easy to use, and which allows fast training of... 详细信息
来源: 评论