咨询与建议

限定检索结果

文献类型

  • 281 篇 会议
  • 102 篇 期刊文献

馆藏范围

  • 383 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 260 篇 工学
    • 191 篇 计算机科学与技术...
    • 176 篇 软件工程
    • 66 篇 信息与通信工程
    • 20 篇 机械工程
    • 19 篇 生物工程
    • 17 篇 控制科学与工程
    • 14 篇 电气工程
    • 14 篇 电子科学与技术(可...
    • 10 篇 光学工程
    • 9 篇 化学工程与技术
    • 7 篇 生物医学工程(可授...
    • 3 篇 仪器科学与技术
    • 3 篇 动力工程及工程热...
    • 2 篇 材料科学与工程(可...
    • 2 篇 土木工程
  • 163 篇 理学
    • 109 篇 物理学
    • 66 篇 数学
    • 36 篇 统计学(可授理学、...
    • 23 篇 生物学
    • 20 篇 系统科学
    • 10 篇 化学
    • 1 篇 地球物理学
  • 37 篇 管理学
    • 27 篇 图书情报与档案管...
    • 10 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 6 篇 法学
    • 5 篇 社会学
    • 1 篇 法学
  • 2 篇 文学
    • 2 篇 外国语言文学
    • 1 篇 中国语言文学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学
  • 1 篇 医学
  • 1 篇 艺术学

主题

  • 66 篇 speech recogniti...
  • 40 篇 training
  • 38 篇 hidden markov mo...
  • 29 篇 neural machine t...
  • 23 篇 machine translat...
  • 20 篇 decoding
  • 19 篇 handwriting reco...
  • 18 篇 computer aided l...
  • 16 篇 recurrent neural...
  • 15 篇 feature extracti...
  • 15 篇 transducers
  • 14 篇 vocabulary
  • 12 篇 databases
  • 12 篇 error analysis
  • 11 篇 speech
  • 10 篇 pattern recognit...
  • 10 篇 humans
  • 9 篇 training data
  • 9 篇 optimization
  • 9 篇 context

机构

  • 52 篇 human language t...
  • 40 篇 human language t...
  • 38 篇 apptek gmbh aach...
  • 32 篇 human language t...
  • 31 篇 human language t...
  • 23 篇 apptek gmbh aach...
  • 21 篇 human language t...
  • 16 篇 human language t...
  • 13 篇 human language t...
  • 12 篇 pattern recognit...
  • 10 篇 human language t...
  • 9 篇 spoken language ...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 6 篇 pattern recognit...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 5 篇 a2ia sa

作者

  • 212 篇 ney hermann
  • 80 篇 hermann ney
  • 61 篇 schlüter ralf
  • 22 篇 ralf schluter
  • 21 篇 ralf schlüter
  • 20 篇 wuebker joern
  • 18 篇 casacuberta fran...
  • 18 篇 zeyer albert
  • 18 篇 zhou wei
  • 16 篇 gao yingbo
  • 14 篇 kim yunsu
  • 14 篇 herold christian
  • 13 篇 mansour saab
  • 13 篇 zeineldeen moham...
  • 13 篇 patrick doetsch
  • 13 篇 peitz stephan
  • 13 篇 huck matthias
  • 12 篇 peris álvaro
  • 12 篇 peter jan-thorst...
  • 12 篇 michel wilfried

语言

  • 381 篇 英文
  • 1 篇 西班牙文
  • 1 篇 中文
检索条件"机构=Human Language Technology and Pattern Recognition"
383 条 记 录,以下是141-150 订阅
排序:
Investigation of Transformer-based Latent Attention Models for Neural Machine Translation  14
Investigation of Transformer-based Latent Attention Models f...
收藏 引用
14th Conference of the Association for Machine Translation in the Americas, AMTA 2020
作者: Bahar, Parnia Makarov, Nikita Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
Current neural translation networks are based on an effective attention mechanism that can be considered as an implicit probabilistic notion of alignment. Such architectures do not guarantee a high quality alignment, ... 详细信息
来源: 评论
Discriminative reordering models for statistical machine translation
Discriminative reordering models for statistical machine tra...
收藏 引用
2006 Workshop on Statistical Machine Translation, WMT 2006, collocated with the HLT-NAACL 2006
作者: Zens, Richard Ney, Hermann Human Language Technology and Pattern Recognition Lehrstuhl für Informatik 6 Computer Science Department RWTH Aachen University AachenD-52056 Germany
We present discriminative reordering models for phrase-based statistical machine translation. The models are trained using the maximum entropy principle. We use several types of features: based on words, based on word... 详细信息
来源: 评论
Translation modeling with bidirectional recurrent neural networks
Translation modeling with bidirectional recurrent neural net...
收藏 引用
2014 Conference on Empirical Methods in Natural language Processing, EMNLP 2014
作者: Sundermeyer, Martin Alkhouli, Tamer Wuebker, Joern Ney, Hermann Human Language Technology Pattern Recognition Group RWTH Aachen University Aachen Germany Spoken Language Processing Group Univ. Paris-Sud France LIMSI/CNRS Orsay France
This work presents two different translation models using recurrent neural networks. The first one is a word-based approach using word alignments. Second, we present phrase-based translation models that are more consi... 详细信息
来源: 评论
The RWTH Phrase-based Statistical Machine Translation System  2
The RWTH Phrase-based Statistical Machine Translation System
收藏 引用
2nd International Workshop on Spoken language Translation, IWSLT 2005
作者: Zens, Richard Bender, Oliver Hasan, Saša Khadivi, Shahram Matusov, Evgeny Xu, Jia Zhang, Yuqi Ney, Hermann Human Language Technology and Pattern Recognition Lehrstuhl für Informatik VI Computer Science Department RWTH Aachen University AachenD-52056 Germany
We give an overview of the RWTH phrase-based statistical machine translation system that was used in the evaluation campaign of the International Workshop on Spoken language Translation 2005. We use a two pass approac... 详细信息
来源: 评论
Chunk-level reordering of source language sentences with automatically learned rules for statistical machine translation
Chunk-level reordering of source language sentences with aut...
收藏 引用
2007 AMTA Workshop on Syntax and Structure in Statistical Translation, SSST 2007 at the 2007 Conference of the North American Chapter of the Association for Computational Linguistics: human language Technologies, NAACL-HLT 2007
作者: Zhang, Yuqi Zens, Richard Ney, Hermann Human Language Technology and Pattern Recognition Lehrstuhl für Informatik 6 Computer Science Department RWTH Aachen University AachenD-52056 Germany
In this paper, we describe a source-side reordering method based on syntactic chunks for phrase-based statistical machine translation. First, we shallow parse the source language sentences. Then, reordering rules are ... 详细信息
来源: 评论
Robust Knowledge Distillation from RNN-T Models with Noisy Training Labels Using Full-Sum Loss  48
Robust Knowledge Distillation from RNN-T Models with Noisy T...
收藏 引用
48th IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2023
作者: Zeineldeen, Mohammad Audhkhasi, Kartik Baskar, Murali Karthick Ramabhadran, Bhuvana Rwth Aachen University Human Language Technology and Pattern Recognition Computer Science Department Aachen52074 Germany Google Llc New York United States
This work studies knowledge distillation (KD) and addresses its constraints for recurrent neural network transducer (RNN-T) models. In hard distillation, a teacher model transcribes large amounts of unlabelled speech ... 详细信息
来源: 评论
Deep sign: Hybrid CNN-HMM for continuous sign language recognition  27
Deep sign: Hybrid CNN-HMM for continuous sign language recog...
收藏 引用
27th British Machine Vision Conference, BMVC 2016
作者: Koller, Oscar Zargaran, Sepehr Ney, Hermann Bowden, Richard Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen Germany Centre for Vision Speech and Signal Processing University of Surrey Guildford United Kingdom
This paper introduces the end-to-end embedding of a CNN into a HMM, while interpreting the outputs of the CNN in a Bayesian fashion. The hybrid CNN-HMM combines the strong discriminative abilities of CNNs with the seq... 详细信息
来源: 评论
Cipher type detection
Cipher type detection
收藏 引用
2014 Conference on Empirical Methods in Natural language Processing, EMNLP 2014
作者: Nuhn, Malte Knight, Kevin Computer Science Department Human Language Technology and Pattern Recognition Group RWTH Aachen University Germany Information Sciences Institute University of Southern California United States
Manual analysis and decryption of enciphered documents is a tedious and error prone work. Often-even after spending large amounts of time on a particular cipher-no decipherment can be found. Automating the decryption ... 详细信息
来源: 评论
Unsupervised adaptation of a denoising autoencoder by Bayesian Feature Enhancement for reverberant asr under mismatch conditions  40
Unsupervised adaptation of a denoising autoencoder by Bayesi...
收藏 引用
40th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2015
作者: Heymann, Jahn Haeb-Umbach, Reinhold Golik, Pavel Schluter, Ralf University of Paderborn Department of Communications Engineering Paderborn Germany RWTH Aachen University Human Language Technology and Pattern Recognition Computer Science Department Aachen Aachen Germany
The parametric Bayesian Feature Enhancement (BFE) and a datadriven Denoising Autoencoder (DA) both bring performance gains in severe single-channel speech recognition conditions. The first can be adjusted to different... 详细信息
来源: 评论
Bag-of-visual-words models for adult image classification and filtering
Bag-of-visual-words models for adult image classification an...
收藏 引用
作者: Deselaers, Thomas Pimenidis, Lexi Ney, Hermann Computer Science Department Human Language Technology and Pattern Recognition RWTH Aachen University Aachen Germany Security and Privacy Research RWTH Aachen University Aachen Germany
We present a method to classify images into different categories of pornographic content to create a system for filtering pornographic images from network traffic. Although different systems for this application were ... 详细信息
来源: 评论