咨询与建议

限定检索结果

文献类型

  • 281 篇 会议
  • 102 篇 期刊文献

馆藏范围

  • 383 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 261 篇 工学
    • 192 篇 计算机科学与技术...
    • 176 篇 软件工程
    • 66 篇 信息与通信工程
    • 20 篇 机械工程
    • 19 篇 生物工程
    • 17 篇 控制科学与工程
    • 14 篇 电气工程
    • 14 篇 电子科学与技术(可...
    • 10 篇 光学工程
    • 9 篇 化学工程与技术
    • 7 篇 生物医学工程(可授...
    • 3 篇 仪器科学与技术
    • 3 篇 动力工程及工程热...
    • 2 篇 材料科学与工程(可...
    • 2 篇 土木工程
  • 163 篇 理学
    • 109 篇 物理学
    • 66 篇 数学
    • 36 篇 统计学(可授理学、...
    • 23 篇 生物学
    • 20 篇 系统科学
    • 10 篇 化学
    • 1 篇 地球物理学
  • 37 篇 管理学
    • 27 篇 图书情报与档案管...
    • 10 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 6 篇 法学
    • 5 篇 社会学
    • 1 篇 法学
  • 2 篇 文学
    • 2 篇 外国语言文学
    • 1 篇 中国语言文学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学
  • 1 篇 医学
  • 1 篇 艺术学

主题

  • 66 篇 speech recogniti...
  • 40 篇 training
  • 38 篇 hidden markov mo...
  • 29 篇 neural machine t...
  • 23 篇 machine translat...
  • 20 篇 decoding
  • 19 篇 handwriting reco...
  • 18 篇 computer aided l...
  • 16 篇 recurrent neural...
  • 15 篇 feature extracti...
  • 15 篇 transducers
  • 14 篇 vocabulary
  • 12 篇 databases
  • 12 篇 error analysis
  • 11 篇 speech
  • 10 篇 pattern recognit...
  • 10 篇 humans
  • 9 篇 training data
  • 9 篇 optimization
  • 9 篇 context

机构

  • 52 篇 human language t...
  • 40 篇 human language t...
  • 38 篇 apptek gmbh aach...
  • 32 篇 human language t...
  • 31 篇 human language t...
  • 23 篇 apptek gmbh aach...
  • 21 篇 human language t...
  • 16 篇 human language t...
  • 13 篇 human language t...
  • 12 篇 pattern recognit...
  • 10 篇 human language t...
  • 9 篇 spoken language ...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 6 篇 pattern recognit...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 5 篇 a2ia sa

作者

  • 212 篇 ney hermann
  • 80 篇 hermann ney
  • 61 篇 schlüter ralf
  • 22 篇 ralf schluter
  • 21 篇 ralf schlüter
  • 20 篇 wuebker joern
  • 18 篇 casacuberta fran...
  • 18 篇 zeyer albert
  • 18 篇 zhou wei
  • 16 篇 gao yingbo
  • 14 篇 kim yunsu
  • 14 篇 herold christian
  • 13 篇 mansour saab
  • 13 篇 zeineldeen moham...
  • 13 篇 patrick doetsch
  • 13 篇 peitz stephan
  • 13 篇 huck matthias
  • 12 篇 peris álvaro
  • 12 篇 peter jan-thorst...
  • 12 篇 michel wilfried

语言

  • 381 篇 英文
  • 1 篇 西班牙文
  • 1 篇 中文
检索条件"机构=Human Language Technology and Pattern Recognition"
383 条 记 录,以下是171-180 订阅
排序:
Speaker adaptive joint training of Gaussian mixture models and bottleneck features
Speaker adaptive joint training of Gaussian mixture models a...
收藏 引用
IEEE Workshop on Automatic Speech recognition and Understanding
作者: Zoltán Tüske Pavel Golik Ralf Schlüter Hermann Ney Human Language Technology and Pattern Recognition RWTH Aachen University Aachen Germany
In the tandem approach, the output of a neural network (NN) serves as input features to a Gaussian mixture model (GMM) aiming to improve the emission probability estimates. As has been shown in our previous work, GMM ... 详细信息
来源: 评论
A convergence analysis of log-linear training and its application to speech recognition
A convergence analysis of log-linear training and its applic...
收藏 引用
IEEE Workshop on Automatic Speech recognition and Understanding
作者: S. Wiesler R. Schlüter H. Ney Human Language Technology and Pattern Recognition RWTH Aachen University of Technology Aachen Germany
Log-linear models are a promising approach for speech recognition. Typically, log-linear models are trained according to a strictly convex criterion. Optimization algorithms are guaranteed to converge to the unique gl... 详细信息
来源: 评论
Confidence-Based Discriminative Training for Model Adaptation in Offline Arabic Handwriting recognition
Confidence-Based Discriminative Training for Model Adaptatio...
收藏 引用
International Conference on Document Analysis and recognition
作者: Philippe Dreuw Georg Heigold Hermann Ney Human Language Technology and Pattern Recognition RWTH Aachen University Aachen Germany
We present a novel confidence-based discriminative training for model adaptation approach for an HMM based Arabic handwriting recognition system to handle different handwriting styles and their *** current approaches ... 详细信息
来源: 评论
EXPLOITING SPARSENESS OF BACKING-OFF language MODELS FOR EFFICIENT LOOK-AHEAD IN LVCSR
EXPLOITING SPARSENESS OF BACKING-OFF LANGUAGE MODELS FOR EFF...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: David Nolden Hermann Ney Ralf Schluter Human Language Technology and Pattern Recognition GroupRWTH Aachen University Aachen Germany
In this paper, we propose a new method for computing and applying language model look-ahead in a dynamic network decoder, exploiting the sparseness of backing-off n-gram language models. Only partial (sparse) look-ahe... 详细信息
来源: 评论
Full-Sum Decoding for Hybrid Hmm Based Speech recognition Using LSTM language Model
Full-Sum Decoding for Hybrid Hmm Based Speech Recognition Us...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Wei Zhou Ralf Schluter Hermann Ney Human Language Technology and Pattern Recognition RWTH Aachen University Aachen Germany
In hybrid HMM based speech recognition, LSTM language models have been widely applied and achieved large improvements. The theoretical capability of modeling any unlimited context suggests that no recombination should...
来源: 评论
Writer Adaptive Training and Writing Variant Model Refinement for Offline Arabic Handwriting recognition
Writer Adaptive Training and Writing Variant Model Refinemen...
收藏 引用
International Conference on Document Analysis and recognition
作者: Philippe Dreuw David Rybach Christian Gollan Hermann Ney Human Language Technology and Pattern Recognition RWTH Aachen University Aachen Germany
We present a writer adaptive training and writer clustering approach for an HMM based Arabic handwriting recognition system to handle different handwriting styles and their variations. Additionally, a writing variant ... 详细信息
来源: 评论
Handwriting recognition with Large Multidimensional Long Short-Term Memory Recurrent Neural Networks
Handwriting Recognition with Large Multidimensional Long Sho...
收藏 引用
International Workshop on Frontiers in Handwriting recognition
作者: Paul Voigtlaender Patrick Doetsch Hermann Ney Human Language Technology and Pattern Recognition RWTH Aachen University Aachen Germany
Multidimensional long short-term memory recurrent neural networks achieve impressive results for handwriting recognition. However, with current CPU-based implementations, their training is very expensive and thus thei... 详细信息
来源: 评论
Fast and scalable decoding with language model look-ahead for phrase-based statistical machine translation
Fast and scalable decoding with language model look-ahead fo...
收藏 引用
50th Annual Meeting of the Association for Computational Linguistics, ACL 2012
作者: Wuebker, Joern Ney, Hermann Zens, Richard Computer Science Department Human Language Technology and Pattern Recognition Group RWTH Aachen University Germany Google Inc. 1600 Amphitheatre Parkway Mountain View CA 94043 United States
In this work we present two extensions to the well-known dynamic programming beam search in phrase-based statistical machine translation (SMT), aiming at increased efficiency of decoding by minimizing the number of la... 详细信息
来源: 评论
Impact of automatic segmentation on the quality, productivity and self-reported post-editing effort of intralingual subtitles  10
Impact of automatic segmentation on the quality, productivit...
收藏 引用
10th International Conference on language Resources and Evaluation, LREC 2016
作者: Álvarez, Aitor Balenciaga, Marina Del Pozo, Arantza Arzelus, Haritz Matamala, Anna Martínez-Hinarejos, Carlos-D. Human Speech and Language Technology Group Vicomtech-IK4 San-Sebastian Spain Department of Translation Interpreting and East Asian Studies UAB Barcelona Spain Pattern Recognition and Human Language Technologies Research Center Universitat Politècnica de València Spain
This paper describes the evaluation methodology followed to measure the impact of using a machine learning algorithm to automatically segment intralingual subtitles. The segmentation quality, productivity and self-rep... 详细信息
来源: 评论
Towards Unsupervised Learning for Handwriting recognition
Towards Unsupervised Learning for Handwriting Recognition
收藏 引用
International Workshop on Frontiers in Handwriting recognition
作者: Michal Kozielski Malte Nuhn Patrick Doetsch Hermann Ney Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen Germany
We present a method for training an off-line handwriting recognition system in an unsupervised manner. For an isolated word recognition task, we are able to bootstrap the system without any annotated data. We then ret... 详细信息
来源: 评论