咨询与建议

限定检索结果

文献类型

  • 281 篇 会议
  • 102 篇 期刊文献

馆藏范围

  • 383 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 260 篇 工学
    • 191 篇 计算机科学与技术...
    • 176 篇 软件工程
    • 66 篇 信息与通信工程
    • 20 篇 机械工程
    • 19 篇 生物工程
    • 17 篇 控制科学与工程
    • 14 篇 电气工程
    • 14 篇 电子科学与技术(可...
    • 10 篇 光学工程
    • 9 篇 化学工程与技术
    • 7 篇 生物医学工程(可授...
    • 3 篇 仪器科学与技术
    • 3 篇 动力工程及工程热...
    • 2 篇 材料科学与工程(可...
    • 2 篇 土木工程
  • 163 篇 理学
    • 109 篇 物理学
    • 66 篇 数学
    • 36 篇 统计学(可授理学、...
    • 23 篇 生物学
    • 20 篇 系统科学
    • 10 篇 化学
    • 1 篇 地球物理学
  • 37 篇 管理学
    • 27 篇 图书情报与档案管...
    • 10 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 6 篇 法学
    • 5 篇 社会学
    • 1 篇 法学
  • 2 篇 文学
    • 2 篇 外国语言文学
    • 1 篇 中国语言文学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学
  • 1 篇 医学
  • 1 篇 艺术学

主题

  • 66 篇 speech recogniti...
  • 40 篇 training
  • 38 篇 hidden markov mo...
  • 29 篇 neural machine t...
  • 23 篇 machine translat...
  • 20 篇 decoding
  • 19 篇 handwriting reco...
  • 18 篇 computer aided l...
  • 16 篇 recurrent neural...
  • 15 篇 feature extracti...
  • 15 篇 transducers
  • 14 篇 vocabulary
  • 12 篇 databases
  • 12 篇 error analysis
  • 11 篇 speech
  • 10 篇 pattern recognit...
  • 10 篇 humans
  • 9 篇 training data
  • 9 篇 optimization
  • 9 篇 context

机构

  • 52 篇 human language t...
  • 40 篇 human language t...
  • 38 篇 apptek gmbh aach...
  • 32 篇 human language t...
  • 31 篇 human language t...
  • 23 篇 apptek gmbh aach...
  • 21 篇 human language t...
  • 16 篇 human language t...
  • 13 篇 human language t...
  • 12 篇 pattern recognit...
  • 10 篇 human language t...
  • 9 篇 spoken language ...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 6 篇 pattern recognit...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 5 篇 a2ia sa

作者

  • 212 篇 ney hermann
  • 80 篇 hermann ney
  • 61 篇 schlüter ralf
  • 22 篇 ralf schluter
  • 21 篇 ralf schlüter
  • 20 篇 wuebker joern
  • 18 篇 casacuberta fran...
  • 18 篇 zeyer albert
  • 18 篇 zhou wei
  • 16 篇 gao yingbo
  • 14 篇 kim yunsu
  • 14 篇 herold christian
  • 13 篇 mansour saab
  • 13 篇 zeineldeen moham...
  • 13 篇 patrick doetsch
  • 13 篇 peitz stephan
  • 13 篇 huck matthias
  • 12 篇 peris álvaro
  • 12 篇 peter jan-thorst...
  • 12 篇 michel wilfried

语言

  • 381 篇 英文
  • 1 篇 西班牙文
  • 1 篇 中文
检索条件"机构=Human Language Technology and Pattern Recognition"
383 条 记 录,以下是261-270 订阅
排序:
Fine-Grained Visual Classification with Efficient End-to-end Localization y 202
arXiv
收藏 引用
arXiv 2020年
作者: Hanselmann, Harald Ney, Hermann Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen Germany AppTek GmbH Aachen Germany
The term fine-grained visual classification (FGVC) refers to classification tasks where the classes are very similar and the classification model needs to be able to find subtle differences to make the correct predict... 详细信息
来源: 评论
Leave-One-Out Phrase Model Training for Large-Scale Deployment  12
Leave-One-Out Phrase Model Training for Large-Scale Deployme...
收藏 引用
Workshop on Statistical Machine Translation
作者: Joern Wuebker Mei-Yuh Hwang Chris Quirk Human Language Technology and Pattern Recognition Group RWTH Aachen University Germany Microsoft Corporation Redmond WA USA
Training the phrase table by force-aligning (FA) the training data with the reference translation has been shown to improve the phrasal translation quality while significantly reducing the phrase table size on medium ... 详细信息
来源: 评论
Combining handwriting and speech recognition for transcribing historical handwritten documents
Combining handwriting and speech recognition for transcribin...
收藏 引用
International Conference on Document Analysis and recognition
作者: Emilio Granell Carlos-D. Martínez-Hinarejos Pattern Recognition and Human Language Technology Research Center Universitat Politècnica de València Valencia Spain
Transcription of historical documents is an interesting task for libraries in order to make available their funds. In the lasts years, the use of Handwritten Text recognition allowed paleographs to speed up the manual... 详细信息
来源: 评论
Improved Robustness to Disfluencies in Rnn-Transducer Based Speech recognition
Improved Robustness to Disfluencies in Rnn-Transducer Based ...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Valentin Mendelev Tina Raissi Guglielmo Camporese Manuel Giollo Amazon Alexa Human Language Technology and Pattern Recognition Group RWTH Aachen University Germany University of Padova Italy
Automatic Speech recognition (ASR) based on Recurrent Neural Network Transducers (RNN-T) is gaining interest in the speech community. We investigate data selection and preparation choices aiming for improved robustnes... 详细信息
来源: 评论
Does Joint Training Really Help Cascaded Speech Translation?
arXiv
收藏 引用
arXiv 2022年
作者: Tran, Viet Anh Khoa Thulke, David Gao, Yingbo Herold, Christian Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
Currently, in speech translation, the straightforward approach - cascading a recognition system with a translation system - delivers state-of-the-art results. However, fundamental challenges such as error propagation ... 详细信息
来源: 评论
Performance analysis of Neural Networks in combination with n-gram language models
Performance analysis of Neural Networks in combination with ...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Ilya Oparin Martin Sundermeyer Hermann Ney Jean-Luc Gauvain LIMSI CNRS Spoken Language Processing Group France Computer Science Department Human Language Technology and Pattern Recognition RWTH Aachen University Germany
Neural Network language models (NNLMs) have recently become an important complement to conventional n-gram language models (LMs) in speech-to-text systems. However, little is known about the behavior of NNLMs. The ana... 详细信息
来源: 评论
ICFHR2014 Competition on Handwritten Text recognition on Transcriptorium Datasets (HTRtS)
ICFHR2014 Competition on Handwritten Text Recognition on Tra...
收藏 引用
International Workshop on Frontiers in Handwriting recognition
作者: Joan Andreu Sánchez Verónica Romero Alejandro H. Toselli Enrique Vidal Pattern Recognition and Human Language Technology Research Center Universitat Politècnica de València València Spain
A contest on Handwritten Text recognition organised in the context of the ICFHR 2014 conference is described. Two tracks with increased freedom on the use of training data were proposed and three research groups parti... 详细信息
来源: 评论
Towards two-dimensional sequence to sequence model in neural machine translation
arXiv
收藏 引用
arXiv 2018年
作者: Bahar, Parnia Brix, Christopher Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department Rwth Aachen University AachenD-52056 Germany
This work investigates an alternative model for neural machine translation (NMT) and proposes a novel architecture, where we employ a multi-dimensional long short-term memory (MDLSTM) for translation modeling. In the ... 详细信息
来源: 评论
Successfully Applying the Stabilized Lottery Ticket Hypothesis to the Transformer Architecture
arXiv
收藏 引用
arXiv 2020年
作者: Brix, Christopher Bahar, Parnia Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
Sparse models require less memory for storage and enable a faster inference by reducing the necessary number of FLOPs. This is relevant both for time-critical and on-device computations using neural networks. The stab... 详细信息
来源: 评论
Improvements in RWTH's System for Off-Line Handwriting recognition
Improvements in RWTH's System for Off-Line Handwriting Recog...
收藏 引用
International Conference on Document Analysis and recognition
作者: Michal Michał Kozielski Patrick Doetsch Hermann Ney Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen Germany Rheinisch-Westfalische Technische Hochschule Aachen Aachen Nordrhein-Westfalen DE Human Language Technol. & Pattern Recognition Group RWTH Aachen Univ. Aachen Germany
In this paper we describe a novel HMM-based system for off-line handwriting recognition. We adapt successful techniques from the domains of large vocabulary speech recognition and image object recognition: moment-base... 详细信息
来源: 评论