咨询与建议

限定检索结果

文献类型

  • 281 篇 会议
  • 102 篇 期刊文献

馆藏范围

  • 383 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 261 篇 工学
    • 192 篇 计算机科学与技术...
    • 176 篇 软件工程
    • 66 篇 信息与通信工程
    • 20 篇 机械工程
    • 19 篇 生物工程
    • 17 篇 控制科学与工程
    • 14 篇 电气工程
    • 14 篇 电子科学与技术(可...
    • 10 篇 光学工程
    • 9 篇 化学工程与技术
    • 7 篇 生物医学工程(可授...
    • 3 篇 仪器科学与技术
    • 3 篇 动力工程及工程热...
    • 2 篇 材料科学与工程(可...
    • 2 篇 土木工程
  • 163 篇 理学
    • 109 篇 物理学
    • 66 篇 数学
    • 36 篇 统计学(可授理学、...
    • 23 篇 生物学
    • 20 篇 系统科学
    • 10 篇 化学
    • 1 篇 地球物理学
  • 37 篇 管理学
    • 27 篇 图书情报与档案管...
    • 10 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 6 篇 法学
    • 5 篇 社会学
    • 1 篇 法学
  • 2 篇 文学
    • 2 篇 外国语言文学
    • 1 篇 中国语言文学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学
  • 1 篇 医学
  • 1 篇 艺术学

主题

  • 66 篇 speech recogniti...
  • 40 篇 training
  • 38 篇 hidden markov mo...
  • 29 篇 neural machine t...
  • 23 篇 machine translat...
  • 20 篇 decoding
  • 19 篇 handwriting reco...
  • 18 篇 computer aided l...
  • 16 篇 recurrent neural...
  • 15 篇 feature extracti...
  • 15 篇 transducers
  • 14 篇 vocabulary
  • 12 篇 databases
  • 12 篇 error analysis
  • 11 篇 speech
  • 10 篇 pattern recognit...
  • 10 篇 humans
  • 9 篇 training data
  • 9 篇 optimization
  • 9 篇 context

机构

  • 52 篇 human language t...
  • 40 篇 human language t...
  • 38 篇 apptek gmbh aach...
  • 32 篇 human language t...
  • 31 篇 human language t...
  • 23 篇 apptek gmbh aach...
  • 21 篇 human language t...
  • 16 篇 human language t...
  • 13 篇 human language t...
  • 12 篇 pattern recognit...
  • 10 篇 human language t...
  • 9 篇 spoken language ...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 6 篇 pattern recognit...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 5 篇 a2ia sa

作者

  • 212 篇 ney hermann
  • 80 篇 hermann ney
  • 61 篇 schlüter ralf
  • 22 篇 ralf schluter
  • 21 篇 ralf schlüter
  • 20 篇 wuebker joern
  • 18 篇 casacuberta fran...
  • 18 篇 zeyer albert
  • 18 篇 zhou wei
  • 16 篇 gao yingbo
  • 14 篇 kim yunsu
  • 14 篇 herold christian
  • 13 篇 mansour saab
  • 13 篇 zeineldeen moham...
  • 13 篇 patrick doetsch
  • 13 篇 peitz stephan
  • 13 篇 huck matthias
  • 12 篇 peris álvaro
  • 12 篇 peter jan-thorst...
  • 12 篇 michel wilfried

语言

  • 381 篇 英文
  • 1 篇 西班牙文
  • 1 篇 中文
检索条件"机构=Human Language Technology and Pattern Recognition"
383 条 记 录,以下是291-300 订阅
排序:
A study of latent monotonic attention variants
arXiv
收藏 引用
arXiv 2021年
作者: Zeyer, Albert Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany AppTek GmbH Aachen Germany
End-to-end models reach state-of-the-art performance for speech recognition, but global soft attention is not monotonic, which might lead to convergence problems, to instability, to bad generalisation, cannot be used ... 详细信息
来源: 评论
Robust Knowledge Distillation from RNN-T Models with Noisy Training Labels Using Full-Sum Loss
Robust Knowledge Distillation from RNN-T Models with Noisy T...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Mohammad Zeineldeen Kartik Audhkhasi Murali Karthick Baskar Bhuvana Ramabhadran Computer Science Department Human Language Technology and Pattern Recognition RWTH Aachen University Aachen Germany Google LLC New York
This work studies knowledge distillation (KD) and addresses its constraints for recurrent neural network transducer (RNN-T) models. In hard distillation, a teacher model transcribes large amounts of unlabelled speech ... 详细信息
来源: 评论
Enhancing and Adversarial: Improve ASR with Speaker Labels
Enhancing and Adversarial: Improve ASR with Speaker Labels
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Wei Zhou Haotian Wu Jingjing Xu Mohammad Zeineldeen Christoph Lüscher Ralf Schlüter Hermann Ney Computer Science Department Human Language Technology and Pattern Recognition RWTH Aachen University Aachen Germany AppTek GmbH Aachen Germany
ASR can be improved by multi-task learning (MTL) with domain enhancing or domain adversarial training, which are two opposite objectives with the aim to increase/decrease domain variance towards domain-aware/agnostic ... 详细信息
来源: 评论
Influence of text line segmentation in Handwritten Text recognition  13
Influence of text line segmentation in Handwritten Text Reco...
收藏 引用
13th International Conference on Document Analysis and recognition, ICDAR 2015
作者: Romero, Veronica Sanchez, Joan Andreu Bosch, Vicente Depuydt, Katrien De Does, Jesse Pattern Recognition and Human Language Technology Universitat Politècnica de València Camí de Vera S/n València Spain Instituut voor Nederlandse Lexicologie 2300RA Matthias de Vrieshof 2-3 Leiden2311 BZ Netherlands
Text line segmentation is the process by which text lines in a document image are localized and extracted. It is an important step in off-line Handwritten Text recognition (HTR) given that the input of these systems i... 详细信息
来源: 评论
On the Relation Between Internal language Model and Sequence Discriminative Training for Neural Transducers
On the Relation Between Internal Language Model and Sequence...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Zijian Yang Wei Zhou Ralf Schlüter Hermann Ney Computer Science Department Human Language Technology and Pattern Recognition RWTH Aachen University Aachen Germany AppTek GmbH Aachen Germany
Internal language model (ILM) subtraction has been widely applied to improve the performance of the RNN-Transducer with external language model (LM) fusion for speech recognition. In this work, we show that sequence d...
来源: 评论
Lattice-Free Sequence Discriminative Training for Phoneme-Based Neural Transducers
Lattice-Free Sequence Discriminative Training for Phoneme-Ba...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Zijian Yang Wei Zhou Ralf Schlüter Hermann Ney Computer Science Department Human Language Technology and Pattern Recognition RWTH Aachen University Aachen Germany AppTek GmbH Aachen Germany
Recently, RNN-Transducers have achieved remarkable results on various automatic speech recognition tasks. However, lattice-free sequence discriminative training methods, which obtain superior performance in hybrid mod... 详细信息
来源: 评论
Why does CTC result in peaky behavior?
arXiv
收藏 引用
arXiv 2021年
作者: Zeyer, Albert Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany AppTek GmbH Aachen Germany
The peaky behavior of CTC models is well known experimentally. However, an understanding about why peaky behavior occurs is missing, and whether this is a good property. We provide a formal analysis of the peaky behav... 详细信息
来源: 评论
One decade of statistical machine translation: 1996-2005
One decade of statistical machine translation: 1996-2005
收藏 引用
IEEE Workshop on Automatic Speech recognition and Understanding
作者: H. Ney Human Language Technology and Pattern Recognition Lehrstuhl fur Informatik VI-Computer Science Department RWTH Aachen University Aachen Germany
In the last decade, the statistical approach has found widespread use in machine translation both for written and spoken language and has had a major impact on the translation accuracy. The goal of this paper is to co... 详细信息
来源: 评论
COMPARISON OF FEEDFORWARD AND RECURRENT NEURAL NETWORK language MODELS
COMPARISON OF FEEDFORWARD AND RECURRENT NEURAL NETWORK LANGU...
收藏 引用
IEEE International Conference on Acoustics, Speech, and Signal Processing
作者: M. Sundermeyer I. Oparin J.-L. Gauvain B. Freiberg R. Schluter H. Ney Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany Spoken Language Processing Group LIMSI CNRS Paris France
Research on language modeling for speech recognition has increasingly focused on the application of neural networks. Two competing concepts have been developed: On the one hand, feedforward neural networks representin... 详细信息
来源: 评论
Efficient Utilization of Large Pre-Trained Models for Low Resource ASR
Efficient Utilization of Large Pre-Trained Models for Low Re...
收藏 引用
Acoustics, Speech, and Signal Processing Workshops (ICASSPW), IEEE International Conference on
作者: Peter Vieting Christoph Lüscher Julian Dierkes Ralf Schlüter Hermann Ney Computer Science Department Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen Germany AppTek GmbH Aachen Germany
Unsupervised representation learning has recently helped automatic speech recognition (ASR) to tackle tasks with limited labeled data. Following this, hardware limitations and applications give rise to the question ho...
来源: 评论