咨询与建议

限定检索结果

文献类型

  • 281 篇 会议
  • 103 篇 期刊文献

馆藏范围

  • 384 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 262 篇 工学
    • 193 篇 计算机科学与技术...
    • 176 篇 软件工程
    • 66 篇 信息与通信工程
    • 20 篇 机械工程
    • 19 篇 生物工程
    • 17 篇 控制科学与工程
    • 14 篇 电气工程
    • 14 篇 电子科学与技术(可...
    • 10 篇 光学工程
    • 9 篇 化学工程与技术
    • 7 篇 生物医学工程(可授...
    • 3 篇 仪器科学与技术
    • 3 篇 动力工程及工程热...
    • 2 篇 材料科学与工程(可...
    • 2 篇 土木工程
  • 163 篇 理学
    • 109 篇 物理学
    • 66 篇 数学
    • 36 篇 统计学(可授理学、...
    • 23 篇 生物学
    • 20 篇 系统科学
    • 10 篇 化学
    • 1 篇 地球物理学
  • 37 篇 管理学
    • 27 篇 图书情报与档案管...
    • 10 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 6 篇 法学
    • 5 篇 社会学
    • 1 篇 法学
  • 2 篇 文学
    • 2 篇 外国语言文学
    • 1 篇 中国语言文学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学
  • 1 篇 医学
  • 1 篇 艺术学

主题

  • 66 篇 speech recogniti...
  • 40 篇 training
  • 38 篇 hidden markov mo...
  • 29 篇 neural machine t...
  • 23 篇 machine translat...
  • 20 篇 decoding
  • 19 篇 handwriting reco...
  • 18 篇 computer aided l...
  • 16 篇 recurrent neural...
  • 15 篇 feature extracti...
  • 15 篇 transducers
  • 14 篇 vocabulary
  • 12 篇 databases
  • 12 篇 error analysis
  • 11 篇 speech
  • 10 篇 pattern recognit...
  • 10 篇 humans
  • 9 篇 training data
  • 9 篇 optimization
  • 9 篇 context

机构

  • 52 篇 human language t...
  • 40 篇 human language t...
  • 38 篇 apptek gmbh aach...
  • 32 篇 human language t...
  • 31 篇 human language t...
  • 23 篇 apptek gmbh aach...
  • 21 篇 human language t...
  • 16 篇 human language t...
  • 13 篇 human language t...
  • 12 篇 pattern recognit...
  • 10 篇 human language t...
  • 9 篇 spoken language ...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 7 篇 pattern recognit...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 5 篇 a2ia sa

作者

  • 212 篇 ney hermann
  • 80 篇 hermann ney
  • 61 篇 schlüter ralf
  • 22 篇 ralf schluter
  • 21 篇 ralf schlüter
  • 20 篇 wuebker joern
  • 18 篇 casacuberta fran...
  • 18 篇 zeyer albert
  • 18 篇 zhou wei
  • 16 篇 gao yingbo
  • 14 篇 kim yunsu
  • 14 篇 herold christian
  • 13 篇 mansour saab
  • 13 篇 zeineldeen moham...
  • 13 篇 patrick doetsch
  • 13 篇 peitz stephan
  • 13 篇 huck matthias
  • 12 篇 peris álvaro
  • 12 篇 peter jan-thorst...
  • 12 篇 michel wilfried

语言

  • 382 篇 英文
  • 1 篇 西班牙文
  • 1 篇 中文
检索条件"机构=Human Language Technology and Pattern Recognition"
384 条 记 录,以下是301-310 订阅
排序:
Efficient Utilization of Large Pre-Trained Models for Low Resource ASR
Efficient Utilization of Large Pre-Trained Models for Low Re...
收藏 引用
Acoustics, Speech, and Signal Processing Workshops (ICASSPW), IEEE International Conference on
作者: Peter Vieting Christoph Lüscher Julian Dierkes Ralf Schlüter Hermann Ney Computer Science Department Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen Germany AppTek GmbH Aachen Germany
Unsupervised representation learning has recently helped automatic speech recognition (ASR) to tackle tasks with limited labeled data. Following this, hardware limitations and applications give rise to the question ho...
来源: 评论
THE RWTH ENGLISH LECTURE recognition SYSTEM
THE RWTH ENGLISH LECTURE RECOGNITION SYSTEM
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Simon Wiesler Kazuki Irie Zoltan Tuske Ralf Schluter Hermann Ney Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany Ecole Centrale Paris Paris France
In this paper, we describe the RWTH speech recognition system for English lectures developed within the Translectures project. A difficulty in the development of an English lectures recognition system, is the high rat... 详细信息
来源: 评论
Acoustic feature combination for robust speech recognition
Acoustic feature combination for robust speech recognition
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: A. Zolnay R. Schluter H. Ney Human Language Technology and Pattern Recognition Lehrstuhl für Informatik VI Computer Science Department RWTH Aachen University Aachen Germany
In this paper, we consider the use of multiple acoustic features of the speech signal for robust speech recognition. We investigate the combination of various auditory based (mel frequency cepstrum coefficients, perce... 详细信息
来源: 评论
Generative models for deep learning with very scarce data
arXiv
收藏 引用
arXiv 2019年
作者: Maroñas, Juan Paredes, Roberto Ramos, Daniel Pattern Recognition and Human Language Technology Universitat Politecnica de Valencia Valencia Spain AUDIAS Universidad Autonoma de Madrid Madrid Spain
The goal of this paper is to deal with a data scarcity scenario where deep learning techniques use to fail. We compare the use of two well established techniques, Restricted Boltzmann Machines and Variational Auto-enc... 详细信息
来源: 评论
The RWTH Arabic-to-English spoken language translation system
The RWTH Arabic-to-English spoken language translation syste...
收藏 引用
IEEE Workshop on Automatic Speech recognition and Understanding
作者: Oliver Bender Evgeny Matusov Stefan Hahn Sasa Hasan Shahram Khadivi Hermann Ney Human Language Technology and Pattern Recognition Lehrstuhl für Informatik 6-Computer Science Department RWTH Aachen University Aachen Germany
We present the RWTH phrase-based statistical machine translation system designed for the translation of Arabic speech into English text. This system was used in the Global Autonomous language Exploitation (GALE) Go/No... 详细信息
来源: 评论
Analysis of deep clustering as preprocessing for automatic speech recognition of sparsely overlapping speech
arXiv
收藏 引用
arXiv 2019年
作者: Menne, Tobias Sklyar, Ilya Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
Significant performance degradation of automatic speech recognition (ASR) systems is observed when the audio signal contains cross-talk. One of the recently proposed approaches to solve the problem of multi-speaker AS... 详细信息
来源: 评论
Efficient Training of Neural Transducer for Speech recognition
arXiv
收藏 引用
arXiv 2022年
作者: Zhou, Wei Michel, Wilfried Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
As one of the most popular sequence-to-sequence modeling approaches for speech recognition, the RNN-Transducer has achieved evolving performance with more and more sophisticated neural network models of growing size a... 详细信息
来源: 评论
Phoneme based neural transducer for large vocabulary speech recognition
arXiv
收藏 引用
arXiv 2020年
作者: Zhou, Wei Berger, Simon Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
To join the advantages of classical and end-to-end approaches for speech recognition, we present a simple, novel and competitive approach for phoneme-based neural transducer modeling. Different alignment label topolog... 详细信息
来源: 评论
LATTICE-FREE SEQUENCE DISCRIMINATIVE TRAINING FOR PHONEME-BASED NEURAL TRANSDUCERS
arXiv
收藏 引用
arXiv 2022年
作者: Yang, Zijian Zhou, Wei Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
Recently, RNN-Transducers have achieved remarkable results on various automatic speech recognition tasks. However, lattice-free sequence discriminative training methods, which obtain superior performance in hybrid mod... 详细信息
来源: 评论
FULL-SUM DECODING FOR HYBRID HMM BASED SPEECH recognition USING LSTM language MODEL
arXiv
收藏 引用
arXiv 2020年
作者: Zhou, Wei Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
In hybrid HMM based speech recognition, LSTM language models have been widely applied and achieved large improvements. The theoretical capability of modeling any unlimited context suggests that no recombination should... 详细信息
来源: 评论