咨询与建议

限定检索结果

文献类型

  • 281 篇 会议
  • 102 篇 期刊文献

馆藏范围

  • 383 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 261 篇 工学
    • 192 篇 计算机科学与技术...
    • 176 篇 软件工程
    • 66 篇 信息与通信工程
    • 20 篇 机械工程
    • 19 篇 生物工程
    • 17 篇 控制科学与工程
    • 14 篇 电气工程
    • 14 篇 电子科学与技术(可...
    • 10 篇 光学工程
    • 9 篇 化学工程与技术
    • 7 篇 生物医学工程(可授...
    • 3 篇 仪器科学与技术
    • 3 篇 动力工程及工程热...
    • 2 篇 材料科学与工程(可...
    • 2 篇 土木工程
  • 163 篇 理学
    • 109 篇 物理学
    • 66 篇 数学
    • 36 篇 统计学(可授理学、...
    • 23 篇 生物学
    • 20 篇 系统科学
    • 10 篇 化学
    • 1 篇 地球物理学
  • 37 篇 管理学
    • 27 篇 图书情报与档案管...
    • 10 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 6 篇 法学
    • 5 篇 社会学
    • 1 篇 法学
  • 2 篇 文学
    • 2 篇 外国语言文学
    • 1 篇 中国语言文学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学
  • 1 篇 医学
  • 1 篇 艺术学

主题

  • 66 篇 speech recogniti...
  • 40 篇 training
  • 38 篇 hidden markov mo...
  • 29 篇 neural machine t...
  • 23 篇 machine translat...
  • 20 篇 decoding
  • 19 篇 handwriting reco...
  • 18 篇 computer aided l...
  • 16 篇 recurrent neural...
  • 15 篇 feature extracti...
  • 15 篇 transducers
  • 14 篇 vocabulary
  • 12 篇 databases
  • 12 篇 error analysis
  • 11 篇 speech
  • 10 篇 pattern recognit...
  • 10 篇 humans
  • 9 篇 training data
  • 9 篇 optimization
  • 9 篇 context

机构

  • 52 篇 human language t...
  • 40 篇 human language t...
  • 38 篇 apptek gmbh aach...
  • 32 篇 human language t...
  • 31 篇 human language t...
  • 23 篇 apptek gmbh aach...
  • 21 篇 human language t...
  • 16 篇 human language t...
  • 13 篇 human language t...
  • 12 篇 pattern recognit...
  • 10 篇 human language t...
  • 9 篇 spoken language ...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 6 篇 pattern recognit...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 5 篇 a2ia sa

作者

  • 212 篇 ney hermann
  • 80 篇 hermann ney
  • 61 篇 schlüter ralf
  • 22 篇 ralf schluter
  • 21 篇 ralf schlüter
  • 20 篇 wuebker joern
  • 18 篇 casacuberta fran...
  • 18 篇 zeyer albert
  • 18 篇 zhou wei
  • 16 篇 gao yingbo
  • 14 篇 kim yunsu
  • 14 篇 herold christian
  • 13 篇 mansour saab
  • 13 篇 zeineldeen moham...
  • 13 篇 patrick doetsch
  • 13 篇 peitz stephan
  • 13 篇 huck matthias
  • 12 篇 peris álvaro
  • 12 篇 peter jan-thorst...
  • 12 篇 michel wilfried

语言

  • 381 篇 英文
  • 1 篇 西班牙文
  • 1 篇 中文
检索条件"机构=Human Language Technology and Pattern Recognition"
383 条 记 录,以下是321-330 订阅
排序:
Generating synthetic audio data for attention-based speech recognition systems
arXiv
收藏 引用
arXiv 2019年
作者: Rossenbach, Nick Zeyer, Albert Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Germany AppTek GmbH 52074 Aachen Aachen52062 Germany
Recent advances in text-to-speech (TTS) led to the development of flexible multi-speaker end-to-end TTS systems. We extend state-of-the-art attention-based automatic speech recognition (ASR) systems with synthetic aud... 详细信息
来源: 评论
A new training pipeline for an improved neural transducer
arXiv
收藏 引用
arXiv 2020年
作者: Zeyer, Albert Merboldt, André Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52062 Germany AppTek GmbH Aachen52062 Germany
The RNN transducer is a promising end-to-end model candidate. We compare the original training criterion with the full marginalization over all alignments, to the commonly used maximum approximation, which simplifies,... 详细信息
来源: 评论
MLLP-UPV and RWTH Aachen Spanish ASR Systems for the IberSpeech-RTVE 2018 Speech-to-Text Transcription Challenge  4
MLLP-UPV and RWTH Aachen Spanish ASR Systems for the IberSpe...
收藏 引用
4th International Conference on Advances in Speech and language Technologies for Iberian languages, IberSPEECH 2018
作者: Jorge, Javier Martínez-Villaronga, Adrià Golik, Pavel Giménez, Adrià Silvestre-Cerdà, Joan Albert Doetsch, Patrick Císcar, Vicent Andreu Ney, Hermann Juan, Alfons Sanchis, Albert Departament de Sistemes Informàtics i Computació Universitat Politècnica de València Spain Human Language Technology and Pattern Recognition RWTH Aachen University Germany Escola Tècnica Superior d'Enginyeria Informàtica Universitat Politècnica de València Spain
This paper describes the Automatic Speech recognition systems built by the MLLP research group of Universitat Politècnica de València and the HLTPR research group of RWTH Aachen for the IberSpeech-RTVE 2018 ... 详细信息
来源: 评论
On language model integration for RNN transducer based speech recognition
arXiv
收藏 引用
arXiv 2021年
作者: Zhou, Wei Zheng, Zuoyun Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
The mismatch between an external language model (LM) and the implicitly learned internal LM (ILM) of RNN-Transducer (RNN-T) can limit the performance of LM integration such as simple shallow fusion. A Bayesian interpr... 详细信息
来源: 评论
ON THE RELATION BETWEEN INTERNAL language MODEL AND SEQUENCE DISCRIMINATIVE TRAINING FOR NEURAL TRANSDUCERS
arXiv
收藏 引用
arXiv 2023年
作者: Yang, Zijian Zhou, Wei Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
Internal language model (ILM) subtraction has been widely applied to improve the performance of the RNN-Transducer with external language model (LM) fusion for speech recognition. In this work, we show that sequence d... 详细信息
来源: 评论
ENHANCING AND ADVERSARIAL: IMPROVE ASR WITH SPEAKER LABELS
arXiv
收藏 引用
arXiv 2022年
作者: Zhou, Wei Wu, Haotian Xu, Jingjing Zeineldeen, Mohammad Lüscher, Christoph Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
ASR can be improved by multi-task learning (MTL) with domain enhancing or domain adversarial training, which are two opposite objectives with the aim to increase/decrease domain variance towards domain-aware/agnostic ... 详细信息
来源: 评论
Equivalence of segmental and neural transducer modeling: A proof of concept
arXiv
收藏 引用
arXiv 2021年
作者: Zhou, Wei Zeyer, Albert Merboldt, André Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
With the advent of direct models in automatic speech recognition (ASR), the formerly prevalent frame-wise acoustic modeling based on hidden Markov models (HMM) diversified into a number of modeling architectures like ... 详细信息
来源: 评论
MORPHEME-BASED FEATURE-RICH language MODELS USING DEEP NEURAL NETWORKS FOR LVCSR OF EGYPTIAN ARABIC
MORPHEME-BASED FEATURE-RICH LANGUAGE MODELS USING DEEP NEURA...
收藏 引用
IEEE International Conference on Acoustics, Speech, and Signal Processing
作者: Amr El-Desoky Mousa Hong-Kwang Jeff Kuo Lidia Mangu Hagen Soltau Human Language Technology and Pattern Recognition - Computer Science Department RWTH Aachen University IBM T. J. Watson Research Center
Egyptian Arabic (EA) is a colloquial version of Arabic. It is a low-resource morphologically rich language that causes problems in Large Vocabulary Continuous Speech recognition (LVCSR). Building LMs on morpheme level... 详细信息
来源: 评论
On using specaugment for end-to-end speech translation
arXiv
收藏 引用
arXiv 2019年
作者: Bahar, Parnia Zeyer, Albert Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University Aachen52062 Germany AppTek Aachen52062 Germany
This work investigates a simple data augmentation technique, SpecAugment, for end-to-end speech translation. SpecAugment is a low-cost implementation method applied directly to the audio input features and it consists...
来源: 评论
Cumulative adaptation for BLSTM acoustic models
arXiv
收藏 引用
arXiv 2019年
作者: Kitza, Markus Golik, Pavel Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
This paper addresses the robust speech recognition problem as an adaptation task. Specifically, we investigate the cumulative application of adaptation methods. A bidirectional Long Short-Term Memory (BLSTM) based neu... 详细信息
来源: 评论