咨询与建议

限定检索结果

文献类型

  • 281 篇 会议
  • 102 篇 期刊文献

馆藏范围

  • 383 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 261 篇 工学
    • 192 篇 计算机科学与技术...
    • 176 篇 软件工程
    • 66 篇 信息与通信工程
    • 20 篇 机械工程
    • 19 篇 生物工程
    • 17 篇 控制科学与工程
    • 14 篇 电气工程
    • 14 篇 电子科学与技术(可...
    • 10 篇 光学工程
    • 9 篇 化学工程与技术
    • 7 篇 生物医学工程(可授...
    • 3 篇 仪器科学与技术
    • 3 篇 动力工程及工程热...
    • 2 篇 材料科学与工程(可...
    • 2 篇 土木工程
  • 163 篇 理学
    • 109 篇 物理学
    • 66 篇 数学
    • 36 篇 统计学(可授理学、...
    • 23 篇 生物学
    • 20 篇 系统科学
    • 10 篇 化学
    • 1 篇 地球物理学
  • 37 篇 管理学
    • 27 篇 图书情报与档案管...
    • 10 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 6 篇 法学
    • 5 篇 社会学
    • 1 篇 法学
  • 2 篇 文学
    • 2 篇 外国语言文学
    • 1 篇 中国语言文学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学
  • 1 篇 医学
  • 1 篇 艺术学

主题

  • 66 篇 speech recogniti...
  • 40 篇 training
  • 38 篇 hidden markov mo...
  • 29 篇 neural machine t...
  • 23 篇 machine translat...
  • 20 篇 decoding
  • 19 篇 handwriting reco...
  • 18 篇 computer aided l...
  • 16 篇 recurrent neural...
  • 15 篇 feature extracti...
  • 15 篇 transducers
  • 14 篇 vocabulary
  • 12 篇 databases
  • 12 篇 error analysis
  • 11 篇 speech
  • 10 篇 pattern recognit...
  • 10 篇 humans
  • 9 篇 training data
  • 9 篇 optimization
  • 9 篇 context

机构

  • 52 篇 human language t...
  • 40 篇 human language t...
  • 38 篇 apptek gmbh aach...
  • 32 篇 human language t...
  • 31 篇 human language t...
  • 23 篇 apptek gmbh aach...
  • 21 篇 human language t...
  • 16 篇 human language t...
  • 13 篇 human language t...
  • 12 篇 pattern recognit...
  • 10 篇 human language t...
  • 9 篇 spoken language ...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 6 篇 pattern recognit...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 5 篇 a2ia sa

作者

  • 212 篇 ney hermann
  • 80 篇 hermann ney
  • 61 篇 schlüter ralf
  • 22 篇 ralf schluter
  • 21 篇 ralf schlüter
  • 20 篇 wuebker joern
  • 18 篇 casacuberta fran...
  • 18 篇 zeyer albert
  • 18 篇 zhou wei
  • 16 篇 gao yingbo
  • 14 篇 kim yunsu
  • 14 篇 herold christian
  • 13 篇 mansour saab
  • 13 篇 zeineldeen moham...
  • 13 篇 patrick doetsch
  • 13 篇 peitz stephan
  • 13 篇 huck matthias
  • 12 篇 peris álvaro
  • 12 篇 peter jan-thorst...
  • 12 篇 michel wilfried

语言

  • 381 篇 英文
  • 1 篇 西班牙文
  • 1 篇 中文
检索条件"机构=Human Language Technology and Pattern Recognition"
383 条 记 录,以下是361-370 订阅
排序:
Investigation of Segmental Conditional Random Fields for large vocabulary handwriting recognition
Investigation of Segmental Conditional Random Fields for lar...
收藏 引用
International Conference on Document Analysis and recognition
作者: Mahdi Hamdani M. Ali Basha Shaik Patrick Doetsch Hermann Ney Human Language Technology and Pattern Recognition Group RWTH Aachen University Germany Rheinisch-Westfalische Technische Hochschule Aachen Aachen Nordrhein-Westfalen DE Spoken Language Processing Group LIMSI CNRS Paris France
Multiple types of models are used in handwriting recognition and can be broadly categorized into generative and discriminative models. Gaussian Hidden Markov Models are used successfully in most of the systems. Discri... 详细信息
来源: 评论
Maschinelle Sprachverarbeitung
收藏 引用
Informatik-Spektrum 2003年 第2期26卷 94-102页
作者: Ney, Hermann Human Language Technology and Pattern Recognition Lehrstuhl für Informatik Rheinisch-Westfälische Technische Hochschule Aachen Ahornstraße 55 52056 Aachen E-Mail: ney@informatik.rwth-aachen.de DE
Dieser Beitrag behandlt die Rolle des statistischen Ansatzes in der maschinellen (oder automatischen) Sprachverarbeitung.
来源: 评论
On the choice of modeling unit for sequence-to-sequence speech recognition
arXiv
收藏 引用
arXiv 2019年
作者: Irie, Kazuki Prabhavalkar, Rohit Kannan, Anjuli Bruguier, Antoine Rybach, David Nguyen, Patrick Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany Google Mountain ViewCA94043 United States
来源: 评论
Two Semi-Supervised Training Approaches for Automated Text recognition
Two Semi-Supervised Training Approaches for Automated Text R...
收藏 引用
International Workshop on Frontiers in Handwriting recognition
作者: Gundram Leifert Roger Labahn Joan Andreu Sánchez Computational Intelligence Technology Lab University of Rostock Rostock Germany Pattern Recognition and Human Language Technologies Center Universitat Politécnica de València València Spain
Automated text recognition is a fundamental problem in Document Image Analysis. Optical models are used for modeling characters while language models are used for composing sentences. Since the scripts and linguistic ... 详细信息
来源: 评论
Controllable Factuality in Document-Grounded Dialog Systems Using a Noisy Channel Model
arXiv
收藏 引用
arXiv 2022年
作者: Daheim, Nico Thulke, David Dugast, Christian Ney, Hermann Ubiquitous Knowledge Processing Lab Department of Computer Science Technical University of Darmstadt Germany Human Language Technology and Pattern Recognition RWTH Aachen University Germany AppTek GmbH Germany
In this work, we present a model for document-grounded response generation in dialog that is decomposed into two components according to Bayes' theorem. One component is a traditional ungrounded response generatio...
来源: 评论
The LIMSI handwriting recognition system for the HTRtS 2014 contest
The LIMSI handwriting recognition system for the HTRtS 2014 ...
收藏 引用
International Conference on Document Analysis and recognition
作者: Théodore Bluche Hermann Ney Christopher Kermorvant LIMSI CNRS Spoken Language Processing Group Orsay France A2iA SA Paris France RWTH Aachen University Human Language Technology and Pattern Recognition Aachen Germany Teklia SAS Paris France
In this paper we present the handwriting recognition systems submitted by the LIMSI to the HTRtS 2014 contest. The systems for both the restricted and unrestricted tracks consisted of combination of several optical mo... 详细信息
来源: 评论
Framewise and CTC training of Neural Networks for handwriting recognition
Framewise and CTC training of Neural Networks for handwritin...
收藏 引用
International Conference on Document Analysis and recognition
作者: Théodore Bluche Hermann Ney Jérôme Louradour Christopher Kermorvant LIMSI CNRS Spoken Language Processing Group Orsay France A2iA SA Paris France RWTH Aachen University Human Language Technology and Pattern Recognition Aachen Germany Teklia SAS Paris France
In recent years, Long Short-Term Memory Recurrent Neural Networks (LSTM-RNNs) trained with the Connectionist Temporal Classification (CTC) objective won many international handwriting recognition evaluations. The CTC ... 详细信息
来源: 评论
HTR-Flor: A Deep Learning System for Offline Handwritten Text recognition
HTR-Flor: A Deep Learning System for Offline Handwritten Tex...
收藏 引用
Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI)
作者: Arthur Flor de Sousa Neto Byron Leite Dantas Bezerra Alejandro Héctor Toselli Estanislau Baptista Lima Escola Politécnica de Pernambuco Universidade de Pernambuco Recife Brazil Pattern Recognition and Human Language Technology Universitat Politècnica de València València Spain
In recent years, Handwritten Text recognition (HTR) has captured a lot of attention among the researchers of the computer vision community. Current state-of-the-art approaches for offline HTR are based on Convolutiona... 详细信息
来源: 评论
Sample drop detection for distant-speech recognition with asynchronous devices distributed in space
arXiv
收藏 引用
arXiv 2019年
作者: Raissi, Tina Pascual, Santiago Omologo, Maurizio Human Language Technology and Pattern Recognition RWTH Aachen University Aachen Germany Universitat Politècnica de Catalunya Barcelona Spain Center for Information and Communication Technology Fondazione Bruno Kessler Trento Italy
In many applications of multi-microphone multi-device processing, the synchronization among different input channels can be affected by the lack of a common clock and isolated drops of samples. In this work, we addres... 详细信息
来源: 评论
RADMM: RECURRENT ADAPTIVE MIXTURE MODEL WITH APPLICATIONS TO DOMAIN ROBUST language MODELING
RADMM: RECURRENT ADAPTIVE MIXTURE MODEL WITH APPLICATIONS TO...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Kazuki Irie Shankar Kumar Michael Nirschl Hank Liao Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University D-52056 Aachen Germany Google Inc. New York NY 10011 USA
We present a new architecture and a training strategy for an adaptive mixture of experts with applications to domain robust language modeling. The proposed model is designed to benefit from the scenario where the trai... 详细信息
来源: 评论