咨询与建议

限定检索结果

文献类型

  • 281 篇 会议
  • 102 篇 期刊文献

馆藏范围

  • 383 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 261 篇 工学
    • 192 篇 计算机科学与技术...
    • 176 篇 软件工程
    • 66 篇 信息与通信工程
    • 20 篇 机械工程
    • 19 篇 生物工程
    • 17 篇 控制科学与工程
    • 14 篇 电气工程
    • 14 篇 电子科学与技术(可...
    • 10 篇 光学工程
    • 9 篇 化学工程与技术
    • 7 篇 生物医学工程(可授...
    • 3 篇 仪器科学与技术
    • 3 篇 动力工程及工程热...
    • 2 篇 材料科学与工程(可...
    • 2 篇 土木工程
  • 163 篇 理学
    • 109 篇 物理学
    • 66 篇 数学
    • 36 篇 统计学(可授理学、...
    • 23 篇 生物学
    • 20 篇 系统科学
    • 10 篇 化学
    • 1 篇 地球物理学
  • 37 篇 管理学
    • 27 篇 图书情报与档案管...
    • 10 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 6 篇 法学
    • 5 篇 社会学
    • 1 篇 法学
  • 2 篇 文学
    • 2 篇 外国语言文学
    • 1 篇 中国语言文学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学
  • 1 篇 医学
  • 1 篇 艺术学

主题

  • 66 篇 speech recogniti...
  • 40 篇 training
  • 38 篇 hidden markov mo...
  • 29 篇 neural machine t...
  • 23 篇 machine translat...
  • 20 篇 decoding
  • 19 篇 handwriting reco...
  • 18 篇 computer aided l...
  • 16 篇 recurrent neural...
  • 15 篇 feature extracti...
  • 15 篇 transducers
  • 14 篇 vocabulary
  • 12 篇 databases
  • 12 篇 error analysis
  • 11 篇 speech
  • 10 篇 pattern recognit...
  • 10 篇 humans
  • 9 篇 training data
  • 9 篇 optimization
  • 9 篇 context

机构

  • 52 篇 human language t...
  • 40 篇 human language t...
  • 38 篇 apptek gmbh aach...
  • 32 篇 human language t...
  • 31 篇 human language t...
  • 23 篇 apptek gmbh aach...
  • 21 篇 human language t...
  • 16 篇 human language t...
  • 13 篇 human language t...
  • 12 篇 pattern recognit...
  • 10 篇 human language t...
  • 9 篇 spoken language ...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 6 篇 pattern recognit...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 5 篇 a2ia sa

作者

  • 212 篇 ney hermann
  • 80 篇 hermann ney
  • 61 篇 schlüter ralf
  • 22 篇 ralf schluter
  • 21 篇 ralf schlüter
  • 20 篇 wuebker joern
  • 18 篇 casacuberta fran...
  • 18 篇 zeyer albert
  • 18 篇 zhou wei
  • 16 篇 gao yingbo
  • 14 篇 kim yunsu
  • 14 篇 herold christian
  • 13 篇 mansour saab
  • 13 篇 zeineldeen moham...
  • 13 篇 patrick doetsch
  • 13 篇 peitz stephan
  • 13 篇 huck matthias
  • 12 篇 peris álvaro
  • 12 篇 peter jan-thorst...
  • 12 篇 michel wilfried

语言

  • 381 篇 英文
  • 1 篇 西班牙文
  • 1 篇 中文
检索条件"机构=Human Language Technology and Pattern Recognition"
383 条 记 录,以下是81-90 订阅
排序:
Adapting neural machine translation with parallel synthetic data  2
Adapting neural machine translation with parallel synthetic ...
收藏 引用
2nd Conference on Machine Translation, WMT 2017
作者: Chinea-Ríos, Mara Peris, Álvaro Casacuberta, Francisco Pattern Recognition and Human Language Technology Research Center Universitat Politècnica de València València Spain
Recent works have shown that the usage of a synthetic parallel corpus can be effectively exploited by a neural machine translation system. In this paper, we propose a new method for adapting a general neural machine t... 详细信息
来源: 评论
Are automatic metrics robust and reliable in specific machine translation tasks?  21
Are automatic metrics robust and reliable in specific machin...
收藏 引用
21st Annual Conference of the European Association for Machine Translation, EAMT 2018
作者: Chinea-Rios, Mara Peris, Álvaro Casacuberta, Francisco Pattern Recognition and Human Language Technology Research Center Universitat Politècnica de València València Spain
We present a comparison of automatic metrics against human evaluations of translation quality in several scenarios which were unexplored up to now. Our experimentation was conducted on translation hypotheses that were... 详细信息
来源: 评论
Local system voting feature for machine translation system combination  10
Local system voting feature for machine translation system c...
收藏 引用
10th Workshop on Statistical Machine Translation, WMT 2015 at the 2015 Conference on Empirical Methods in Natural language Processing, EMNLP 2015
作者: Freitag, Markus Peter, Jan-Thorsten Peitz, Stephan Feng, Minwei Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department Rwth Aachen University AachenD-52056 Germany
In this paper, we enhance the traditional confusion network system combination approach with an additional model trained by a neural network. This work is motivated by the fact that the commonly used binary system vot... 详细信息
来源: 评论
Active learning for interactive neural machine translation of data streams  22
Active learning for interactive neural machine translation o...
收藏 引用
22nd Conference on Computational Natural language Learning, CoNLL 2018
作者: Peris, Álvaro Casacuberta, Francisco Pattern Recognition and Human Language Technology Research Center Universitat Politècnica de València València Spain
We study the application of active learning techniques to the translation of unbounded data streams via interactive neural machine translation. The main idea is to select, from an unbounded stream of source sentences,... 详细信息
来源: 评论
The RWTH Aachen University English-German and German-English Unsupervised Neural Machine Translation Systems for WMT 2018  3
The RWTH Aachen University English-German and German-English...
收藏 引用
3rd Conference on Machine Translation, WMT 2018 at the Conference on Empirical Methods in Natural language Processing, EMNLP 2018
作者: Graça, Miguel Kim, Yunsu Schamper, Julian Geng, Jiahui Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
This paper describes the unsupervised neural machine translation (NMT) systems of the RWTH Aachen University developed for the English ↔ German news translation task of the EMNLP 2018 Third Conference on Machine Trans... 详细信息
来源: 评论
The rwth aachen german-english machine translation system for WMT 2014  9
The rwth aachen german-english machine translation system fo...
收藏 引用
9th Workshop on Statistical Machine Translation, WMT 2014 at the 52nd Conference of the Associationfor Computational Linguistics, ACL 2014
作者: Peitz, Stephan Wuebker, Joern Freitag, Markus Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
This paper describes the statistical machine translation (SMT) systems developed at RWTH Aachen University for the German!English translation task of the ACL 2014 Eighth Workshop on Statistical Machine Translation (WM... 详细信息
来源: 评论
Diving Deep into Context-Aware Neural Machine Translation  5
Diving Deep into Context-Aware Neural Machine Translation
收藏 引用
5th Conference on Machine Translation, WMT 2020
作者: Huo, Jingjing Herold, Christian Gao, Yingbo Dahlmann, Leonard Khadivi, Shahram Ney, Hermann eBay Inc. Aachen Germany Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen Germany
Context-aware neural machine translation (NMT) is a promising direction to improve the translation quality by making use of the additional context, e.g., document-level translation, or having meta-information. Althoug... 详细信息
来源: 评论
The RWTH Aachen Machine Translation System for WMT 2013  8
The RWTH Aachen Machine Translation System for WMT 2013
收藏 引用
8th Workshop on Statistical Machine Translation, WMT 2013
作者: Peitz, Stephan Mansour, Saab Peter, Jan-Thorsten Schmidt, Christoph Wuebker, Joern Huck, Matthias Freitag, Markus Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
This paper describes the statistical machine translation (SMT) systems developed at RWTH Aachen University for the translation task of the ACL 2013 Eighth Workshop on Statistical Machine Translation (WMT 2013). We par... 详细信息
来源: 评论
Document-Level language Models for Machine Translation  8
Document-Level Language Models for Machine Translation
收藏 引用
8th Conference on Machine Translation, WMT 2023
作者: Petrick, Frithjof Herold, Christian Petrushkov, Pavel Khadivi, Shahram Ney, Hermann eBay Inc. Aachen Germany Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen Germany
Despite the known limitations, most machine translation systems today still operate on the sentence-level. One reason for this is, that most parallel training data is only sentence-level aligned, without document-leve... 详细信息
来源: 评论
The RWTH Aachen Machine Translation System for WMT 2012  7
The RWTH Aachen Machine Translation System for WMT 2012
收藏 引用
7th Workshop on Statistical Machine Translation, WMT 2012, immediately following the Conference of the North-American Chapter of the Association for Computational Linguistics - human language Technologies, NAACL HLT 2012
作者: Huck, Matthias Peitz, Stephan Freitag, Markus Nuhn, Malte Ney, Hermann Computer Science Department Human Language Technology And Pattern Recognition Group Rwth Aachen University AachenD-52056 Germany
This paper describes the statistical machine translation (SMT) systems developed at RWTH Aachen University for the translation task of the NAACL 2012 Seventh Workshop on Statistical Machine Translation (WMT 2012). We ... 详细信息
来源: 评论