咨询与建议

限定检索结果

文献类型

  • 145 篇 会议
  • 79 篇 期刊文献

馆藏范围

  • 224 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 161 篇 工学
    • 116 篇 计算机科学与技术...
    • 102 篇 软件工程
    • 47 篇 信息与通信工程
    • 16 篇 电气工程
    • 15 篇 电子科学与技术(可...
    • 14 篇 控制科学与工程
    • 13 篇 机械工程
    • 6 篇 生物工程
    • 5 篇 化学工程与技术
    • 5 篇 生物医学工程(可授...
    • 3 篇 光学工程
    • 3 篇 交通运输工程
    • 2 篇 动力工程及工程热...
  • 101 篇 理学
    • 74 篇 物理学
    • 39 篇 数学
    • 19 篇 统计学(可授理学、...
    • 12 篇 系统科学
    • 7 篇 生物学
    • 5 篇 化学
  • 18 篇 管理学
    • 11 篇 图书情报与档案管...
    • 5 篇 管理科学与工程(可...
    • 3 篇 工商管理
    • 2 篇 公共管理
  • 4 篇 法学
    • 4 篇 社会学
  • 4 篇 医学
    • 4 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 公共卫生与预防医...
  • 2 篇 文学
    • 2 篇 新闻传播学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 教育学
    • 1 篇 体育学
  • 1 篇 农学

主题

  • 51 篇 speech recogniti...
  • 15 篇 training
  • 14 篇 hidden markov mo...
  • 13 篇 neural machine t...
  • 12 篇 machine translat...
  • 12 篇 decoding
  • 12 篇 transducers
  • 11 篇 computer aided l...
  • 9 篇 error analysis
  • 9 篇 recurrent neural...
  • 8 篇 speech
  • 8 篇 feature extracti...
  • 8 篇 neural network
  • 7 篇 modelling langua...
  • 7 篇 vocabulary
  • 7 篇 humans
  • 6 篇 handwriting reco...
  • 6 篇 automatic speech...
  • 5 篇 hierarchical sys...
  • 5 篇 modeling languag...

机构

  • 40 篇 human language t...
  • 37 篇 apptek gmbh aach...
  • 32 篇 human language t...
  • 20 篇 human language t...
  • 10 篇 human language t...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 7 篇 spoken language ...
  • 7 篇 apptek gmbh aach...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 5 篇 pattern recognit...
  • 5 篇 human language t...
  • 5 篇 future technolog...
  • 4 篇 human language t...
  • 4 篇 institute of res...
  • 4 篇 school of medici...
  • 3 篇 human language t...

作者

  • 140 篇 ney hermann
  • 55 篇 schlüter ralf
  • 36 篇 hermann ney
  • 16 篇 zeyer albert
  • 16 篇 zhou wei
  • 15 篇 ralf schluter
  • 14 篇 gao yingbo
  • 12 篇 ralf schlüter
  • 12 篇 mansour saab
  • 12 篇 zeineldeen moham...
  • 12 篇 michel wilfried
  • 12 篇 zens richard
  • 11 篇 herold christian
  • 10 篇 bahar parnia
  • 10 篇 peitz stephan
  • 9 篇 peter jan-thorst...
  • 9 篇 schluter ralf
  • 9 篇 freitag markus
  • 9 篇 wang weiyue
  • 8 篇 wuebker joern

语言

  • 224 篇 英文
检索条件"机构=Human Language Technology and Pattern Recognition - Computer Science Department"
224 条 记 录,以下是181-190 订阅
排序:
Improved training of end-to-end attention models for speech recognition
arXiv
收藏 引用
arXiv 2018年
作者: Zeyer, Albert Irie, Kazuki Schlüter, Ralf Ney, Hermann Computer Science Department Rwth Aachen University Human Language Technology and Pattern Recognition Aachen52062 Germany AppTek United States Nnaisense Switzerland
Sequence-to-sequence attention-based models on subword units allow simple open-vocabulary end-to-end speech recognition. In this work, we show that such models can achieve competitive results on the Switchboard 300h a... 详细信息
来源: 评论
CONFORMER-BASED HYBRID ASR SYSTEM FOR SWITCHBOARD DATASET
arXiv
收藏 引用
arXiv 2021年
作者: Zeineldeen, Mohammad Xu, Jingjing Lüscher, Christoph Michel, Wilfried Gerstenberger, Alexander Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
The recently proposed conformer architecture has been successfully used for end-to-end automatic speech recognition (ASR) architectures achieving state-of-the-art performance on different datasets. To our best knowled... 详细信息
来源: 评论
The rwth asr system for ted-lium release 2: improving hybrid hmm with specaugment
arXiv
收藏 引用
arXiv 2020年
作者: Zhou, Wei Michel, Wilfried Irie, Kazuki Kitza, Markus Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
We present a complete training pipeline to build a state-of-the-art hybrid HMM-based ASR system on the 2nd release of the TED-LIUM corpus. Data augmentation using SpecAugment is successfully applied to improve perform... 详细信息
来源: 评论
Robust Beam Search for Encoder-Decoder Attention Based Speech recognition without Length Bias
arXiv
收藏 引用
arXiv 2020年
作者: Zhou, Wei Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
As one popular modeling approach for end-to-end speech recognition, attention-based encoder-decoder models are known to suffer the length bias and corresponding beam problem. Different approaches have been applied in ... 详细信息
来源: 评论
A systematic comparison of grapheme-based vs. phoneme-based label units for encoder-decoder-attention models
arXiv
收藏 引用
arXiv 2020年
作者: Zeineldeen, Mohammad Zeyer, Albert Zhou, Wei Ng, Thomas Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University 52062 Aachen Germany AppTek GmbH Aachen52062 Germany
Following the rationale of end-to-end modeling, CTC, RNN-T or encoder-decoder-attention models for automatic speech recognition (ASR) use graphemes or grapheme-based subword units based on e.g. byte-pair encoding (BPE... 详细信息
来源: 评论
Comparing the benefit of synthetic training data for various automatic speech recognition architectures
arXiv
收藏 引用
arXiv 2021年
作者: Rossenbach, Nick Zeineldeen, Mohammad Hilmes, Benedikt Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
Recent publications on automatic-speech-recognition (ASR) have a strong focus on attention encoder-decoder (AED) architectures which tend to suffer from over-fitting in low resource scenarios. One solution to tackle t... 详细信息
来源: 评论
On using 2D sequence-to-sequence models for speech recognition
arXiv
收藏 引用
arXiv 2019年
作者: Bahar, Parnia Zeyer, Albert Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany AppTek McLean United States
Attention-based sequence-to-sequence models have shown promising results in automatic speech recognition. Using these architectures, one-dimensional input and output sequences are related by an attention approach, the... 详细信息
来源: 评论
Efficient Utilization of Large Pre-Trained Models for Low Resource ASR
arXiv
收藏 引用
arXiv 2022年
作者: Vieting, Peter Lüscher, Christoph Dierkes, Julian Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
Unsupervised representation learning has recently helped automatic speech recognition (ASR) to tackle tasks with limited labeled data. Following this, hardware limitations and applications give rise to the question ho... 详细信息
来源: 评论
Face-sketch learning with human sketch-drawing order enforcement
收藏 引用
science China(Information sciences) 2020年 第11期63卷 298-311页
作者: Liang CHANG Lihua JIN Lifen WENG Wentao CHAO Xuguang WANG Xiaoming DENG Qiulei DONG School of Artificial Intelligence Beijing Normal University Department of Design Art Xiamen University of Technology Department of Automation North China Electric Power University Beijing Key Laboratory of Human Computer Interactions Institute of Software Chinese Academy of Sciences National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences School of Artificial Intelligence University of Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology Chinese Academy of Sciences
Dear editor,Although face-sketch synthesis generates a sketch from a given face photo automatically [1], it is an open research problem in computer vision [2–4]. Recently, several deep neural network (DNN)methods for... 详细信息
来源: 评论
Investigation of large-margin softmax in neural language modeling
arXiv
收藏 引用
arXiv 2020年
作者: Huo, Jingjing Gao, Yingbo Wang, Weiyue Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
To encourage intra-class compactness and inter-class separability among trainable feature vectors, large-margin softmax methods are developed and widely applied in the face recognition community. The introduction of t... 详细信息
来源: 评论