咨询与建议

限定检索结果

文献类型

  • 145 篇 会议
  • 79 篇 期刊文献

馆藏范围

  • 224 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 161 篇 工学
    • 116 篇 计算机科学与技术...
    • 102 篇 软件工程
    • 47 篇 信息与通信工程
    • 16 篇 电气工程
    • 15 篇 电子科学与技术(可...
    • 14 篇 控制科学与工程
    • 13 篇 机械工程
    • 6 篇 生物工程
    • 5 篇 化学工程与技术
    • 5 篇 生物医学工程(可授...
    • 3 篇 光学工程
    • 3 篇 交通运输工程
    • 2 篇 动力工程及工程热...
  • 101 篇 理学
    • 74 篇 物理学
    • 39 篇 数学
    • 19 篇 统计学(可授理学、...
    • 12 篇 系统科学
    • 7 篇 生物学
    • 5 篇 化学
  • 18 篇 管理学
    • 11 篇 图书情报与档案管...
    • 5 篇 管理科学与工程(可...
    • 3 篇 工商管理
    • 2 篇 公共管理
  • 4 篇 法学
    • 4 篇 社会学
  • 4 篇 医学
    • 4 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 公共卫生与预防医...
  • 2 篇 文学
    • 2 篇 新闻传播学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 教育学
    • 1 篇 体育学
  • 1 篇 农学

主题

  • 51 篇 speech recogniti...
  • 15 篇 training
  • 14 篇 hidden markov mo...
  • 13 篇 neural machine t...
  • 12 篇 machine translat...
  • 12 篇 decoding
  • 12 篇 transducers
  • 11 篇 computer aided l...
  • 9 篇 error analysis
  • 9 篇 recurrent neural...
  • 8 篇 speech
  • 8 篇 feature extracti...
  • 8 篇 neural network
  • 7 篇 modelling langua...
  • 7 篇 vocabulary
  • 7 篇 humans
  • 6 篇 handwriting reco...
  • 6 篇 automatic speech...
  • 5 篇 hierarchical sys...
  • 5 篇 modeling languag...

机构

  • 40 篇 human language t...
  • 37 篇 apptek gmbh aach...
  • 32 篇 human language t...
  • 20 篇 human language t...
  • 10 篇 human language t...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 7 篇 spoken language ...
  • 7 篇 apptek gmbh aach...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 5 篇 pattern recognit...
  • 5 篇 human language t...
  • 5 篇 future technolog...
  • 4 篇 human language t...
  • 4 篇 institute of res...
  • 4 篇 school of medici...
  • 3 篇 human language t...

作者

  • 140 篇 ney hermann
  • 55 篇 schlüter ralf
  • 36 篇 hermann ney
  • 16 篇 zeyer albert
  • 16 篇 zhou wei
  • 15 篇 ralf schluter
  • 14 篇 gao yingbo
  • 12 篇 ralf schlüter
  • 12 篇 mansour saab
  • 12 篇 zeineldeen moham...
  • 12 篇 michel wilfried
  • 12 篇 zens richard
  • 11 篇 herold christian
  • 10 篇 bahar parnia
  • 10 篇 peitz stephan
  • 9 篇 peter jan-thorst...
  • 9 篇 schluter ralf
  • 9 篇 freitag markus
  • 9 篇 wang weiyue
  • 8 篇 wuebker joern

语言

  • 224 篇 英文
检索条件"机构=Human Language Technology and Pattern Recognition - Computer Science Department"
224 条 记 录,以下是21-30 订阅
排序:
Towards a Better Evaluation of Metrics for Machine Translation  5
Towards a Better Evaluation of Metrics for Machine Translati...
收藏 引用
5th Conference on Machine Translation, WMT 2020
作者: Stanchev, Peter Wang, Weiyue Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52056 Germany
An important aspect of machine translation is its evaluation, which can be achieved through the use of a variety of metrics. To compare these metrics, the workshop on statistical machine translation annually evaluates... 详细信息
来源: 评论
Extending statistical machine translation with discriminative and trigger-based lexicon models
Extending statistical machine translation with discriminativ...
收藏 引用
2009 Conference on Empirical Methods in Natural language Processing, EMNLP 2009, Held in Conjunction with ACL-IJCNLP 2009
作者: Mauser, Arne Hasan, SǍa Ney, Hermann Human Language Technology and Pattern Recognition Group Department of Computer Science 6 RWTH Aachen University Germany
In this work, we propose two extensions of standard word lexicons in statistical machine translation: A discriminative word lexicon that uses sentence-level source information to predict the target words and a trigger... 详细信息
来源: 评论
Hybrid language models using mixed types of sub-lexical units for open vocabulary German LVCSR
Hybrid language models using mixed types of sub-lexical unit...
收藏 引用
12th Annual Conference of the International Speech Communication Association, INTERSPEECH 2011
作者: Ali Basha Shaik, M. El-Desoky Mousa, Amr Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University 52056 Aachen Germany
German is a highly inflected language with a large number of words derived from the same root. It makes use of a high degree of word compounding leading to high Out-of-vocabulary (OOV) rates, and language Model (LM) p... 详细信息
来源: 评论
Morpheme based Factored language Models for German LVCSR
Morpheme based Factored Language Models for German LVCSR
收藏 引用
12th Annual Conference of the International Speech Communication Association, INTERSPEECH 2011
作者: El-Desoky Mousa, Amr Ali Basha Shaik, M. Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University 52056 Aachen Germany
German is a highly inflectional language, where a large number of words can be generated from the same root. It makes a liberal use of compounding leading to high Out-of-vocabulary (OOV) rates, and poor language Model... 详细信息
来源: 评论
Returnn: The RWTH extensible training framework for universal recurrent neural networks
Returnn: The RWTH extensible training framework for universa...
收藏 引用
2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017
作者: Doetsch, Patrick Zeyer, Albert Voigtlaender, Paul Kulikov, Ilia Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52062 Germany
In this work we release our extensible and easily configurable neural network training software. It provides a rich set of functional layers with a particular focus on efficient training of recurrent neural network to... 详细信息
来源: 评论
Acoustic feature combination for robust speech recognition
Acoustic feature combination for robust speech recognition
收藏 引用
2005 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP '05
作者: Zolnay, András Schlüter, Ralf Ney, Hermann Computer Science Department Human Language Technology and Pattern Recognition RWTH Aachen University 52056 Aachen Germany
In this paper, we consider the use of multiple acoustic features of the speech signal for robust speech recognition. We investigate the combination of various auditory based (Mel Frequency Cepstrum Coefficients, Perce... 详细信息
来源: 评论
CharacTER: Translation Edit Rate on Character Level  1
CharacTER: Translation Edit Rate on Character Level
收藏 引用
1st Conference on Machine Translation, WMT 2016, held at the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016
作者: Wang, Weiyue Peter, Jan-Thorsten Rosendahl, Hendrik Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52056 Germany
Recently, the capability of character-level evaluation measures for machine translation output has been confirmed by several metrics. This work proposes translation edit rate on character level (CharacTER), which calc... 详细信息
来源: 评论
The RWTH Aachen Speech recognition and Machine Translation System for IWSLT 2012  9
The RWTH Aachen Speech Recognition and Machine Translation S...
收藏 引用
9th International Workshop on Spoken language Translation, IWSLT 2012
作者: Peitz, Stephan Mansour, Saab Freitag, Markus Feng, Minwei Huck, Matthias Wuebker, Joern Nuhn, Malte Nußbaum-Thom, Markus Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University Aachen Germany
In this paper, the automatic speech recognition (ASR) and statistical machine translation (SMT) systems of RWTH Aachen University developed for the evaluation campaign of the International Workshop on Spoken language ... 详细信息
来源: 评论
The RWTH Aachen Machine Translation System for IWSLT 2011  8
The RWTH Aachen Machine Translation System for IWSLT 2011
收藏 引用
8th International Workshop on Spoken language Translation, IWSLT 2011
作者: Wuebker, Joern Huck, Matthias Mansour, Saab Freitag, Markus Feng, Minwei Peitz, Stephan Schmidt, Christoph Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University Aachen Germany
In this paper the statistical machine translation (SMT) systems of RWTH Aachen University developed for the evaluation campaign of the International Workshop on Spoken language Translation (IWSLT) 2011 is presented. W... 详细信息
来源: 评论
Non-Stationary Signal Processing and its Application in Speech recognition
Non-Stationary Signal Processing and its Application in Spee...
收藏 引用
2012 SAPA-SCALE Conference
作者: Tüske, Zoltán Drepper, Friedhelm R. Schlüter, Ralf Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52056 Germany
The most widely used acoustic feature extraction methods of current automatic speech recognition (ASR) systems are based on the assumption of stationarity. In this paper we extensively evaluate a recently introduced f... 详细信息
来源: 评论