咨询与建议

限定检索结果

文献类型

  • 148 篇 会议
  • 82 篇 期刊文献

馆藏范围

  • 230 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 165 篇 工学
    • 120 篇 计算机科学与技术...
    • 106 篇 软件工程
    • 47 篇 信息与通信工程
    • 16 篇 电气工程
    • 15 篇 电子科学与技术(可...
    • 15 篇 控制科学与工程
    • 14 篇 机械工程
    • 6 篇 生物工程
    • 5 篇 化学工程与技术
    • 5 篇 生物医学工程(可授...
    • 4 篇 光学工程
    • 3 篇 交通运输工程
    • 2 篇 动力工程及工程热...
  • 105 篇 理学
    • 76 篇 物理学
    • 42 篇 数学
    • 19 篇 统计学(可授理学、...
    • 12 篇 系统科学
    • 7 篇 生物学
    • 5 篇 化学
  • 19 篇 管理学
    • 11 篇 图书情报与档案管...
    • 6 篇 管理科学与工程(可...
    • 3 篇 工商管理
    • 2 篇 公共管理
  • 5 篇 法学
    • 4 篇 社会学
    • 1 篇 法学
  • 4 篇 医学
    • 4 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 公共卫生与预防医...
  • 2 篇 文学
    • 2 篇 新闻传播学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 教育学
  • 1 篇 农学
  • 1 篇 艺术学

主题

  • 51 篇 speech recogniti...
  • 15 篇 hidden markov mo...
  • 15 篇 training
  • 13 篇 neural machine t...
  • 12 篇 machine translat...
  • 12 篇 decoding
  • 12 篇 transducers
  • 11 篇 computer aided l...
  • 9 篇 error analysis
  • 9 篇 recurrent neural...
  • 8 篇 speech
  • 8 篇 feature extracti...
  • 8 篇 neural network
  • 7 篇 modelling langua...
  • 7 篇 vocabulary
  • 7 篇 humans
  • 6 篇 optimization
  • 6 篇 handwriting reco...
  • 5 篇 hierarchical sys...
  • 5 篇 modeling languag...

机构

  • 40 篇 human language t...
  • 37 篇 apptek gmbh aach...
  • 32 篇 human language t...
  • 20 篇 human language t...
  • 10 篇 human language t...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 7 篇 spoken language ...
  • 7 篇 apptek gmbh aach...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 5 篇 pattern recognit...
  • 5 篇 human language t...
  • 5 篇 future technolog...
  • 4 篇 national laborat...
  • 4 篇 human language t...
  • 4 篇 institute of res...
  • 4 篇 school of medici...

作者

  • 141 篇 ney hermann
  • 55 篇 schlüter ralf
  • 37 篇 hermann ney
  • 16 篇 zeyer albert
  • 16 篇 zhou wei
  • 15 篇 ralf schluter
  • 14 篇 gao yingbo
  • 12 篇 ralf schlüter
  • 12 篇 mansour saab
  • 12 篇 zeineldeen moham...
  • 12 篇 michel wilfried
  • 12 篇 zens richard
  • 11 篇 herold christian
  • 10 篇 bahar parnia
  • 10 篇 peitz stephan
  • 9 篇 peter jan-thorst...
  • 9 篇 schluter ralf
  • 9 篇 freitag markus
  • 9 篇 wang weiyue
  • 8 篇 wuebker joern

语言

  • 230 篇 英文
检索条件"机构=Human Language Technology and Pattern Recognition Computer Science"
230 条 记 录,以下是81-90 订阅
排序:
Robust Knowledge Distillation from RNN-T Models with Noisy Training Labels Using Full-Sum Loss  48
Robust Knowledge Distillation from RNN-T Models with Noisy T...
收藏 引用
48th IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2023
作者: Zeineldeen, Mohammad Audhkhasi, Kartik Baskar, Murali Karthick Ramabhadran, Bhuvana Rwth Aachen University Human Language Technology and Pattern Recognition Computer Science Department Aachen52074 Germany Google Llc New York United States
This work studies knowledge distillation (KD) and addresses its constraints for recurrent neural network transducer (RNN-T) models. In hard distillation, a teacher model transcribes large amounts of unlabelled speech ... 详细信息
来源: 评论
The RWTH Phrase-based Statistical Machine Translation System  2
The RWTH Phrase-based Statistical Machine Translation System
收藏 引用
2nd International Workshop on Spoken language Translation, IWSLT 2005
作者: Zens, Richard Bender, Oliver Hasan, Saša Khadivi, Shahram Matusov, Evgeny Xu, Jia Zhang, Yuqi Ney, Hermann Human Language Technology and Pattern Recognition Lehrstuhl für Informatik VI Computer Science Department RWTH Aachen University AachenD-52056 Germany
We give an overview of the RWTH phrase-based statistical machine translation system that was used in the evaluation campaign of the International Workshop on Spoken language Translation 2005. We use a two pass approac... 详细信息
来源: 评论
Are very large N-best lists useful for SMT?
Are very large N-best lists useful for SMT?
收藏 引用
2007 human language technology Conference of the North American Chapter of the Association of Computational Linguistics, NAACL-HLT 2007
作者: Hasan, Saša Zens, Richard Ney, Hermann Human Language Technology and Pattern Recognition Lehrstuhl für Informatik 6 Computer Science Department RWTH Aachen University AachenD-52056 Germany
This paper describes an efficient method to extract large n-best lists from a word graph produced by a statistical machine translation system. The extraction is based on the k shortest paths algorithm which is efficie... 详细信息
来源: 评论
Chunk-level reordering of source language sentences with automatically learned rules for statistical machine translation
Chunk-level reordering of source language sentences with aut...
收藏 引用
2007 AMTA Workshop on Syntax and Structure in Statistical Translation, SSST 2007 at the 2007 Conference of the North American Chapter of the Association for Computational Linguistics: human language Technologies, NAACL-HLT 2007
作者: Zhang, Yuqi Zens, Richard Ney, Hermann Human Language Technology and Pattern Recognition Lehrstuhl für Informatik 6 Computer Science Department RWTH Aachen University AachenD-52056 Germany
In this paper, we describe a source-side reordering method based on syntactic chunks for phrase-based statistical machine translation. First, we shallow parse the source language sentences. Then, reordering rules are ... 详细信息
来源: 评论
Cipher type detection
Cipher type detection
收藏 引用
2014 Conference on Empirical Methods in Natural language Processing, EMNLP 2014
作者: Nuhn, Malte Knight, Kevin Computer Science Department Human Language Technology and Pattern Recognition Group RWTH Aachen University Germany Information Sciences Institute University of Southern California United States
Manual analysis and decryption of enciphered documents is a tedious and error prone work. Often-even after spending large amounts of time on a particular cipher-no decipherment can be found. Automating the decryption ... 详细信息
来源: 评论
Semantic cohesion model for phrase-based SMT
Semantic cohesion model for phrase-based SMT
收藏 引用
24th International Conference on Computational Linguistics, COLING 2012
作者: Feng, Minwei Sun, Weiwei Ney, Hermann Computer Science Department Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen Germany MOE Key Laboratory of Computational Linguistics Institute of Computer Science and Technology Peking University Beijing China
In this paper, we propose a novel semantic cohesion model. Our model utilizes the predicateargument structures as soft constraints and plays the role as a reordering model in the phrasebased statistical machine transl... 详细信息
来源: 评论
Bag-of-visual-words models for adult image classification and filtering
Bag-of-visual-words models for adult image classification an...
收藏 引用
作者: Deselaers, Thomas Pimenidis, Lexi Ney, Hermann Computer Science Department Human Language Technology and Pattern Recognition RWTH Aachen University Aachen Germany Security and Privacy Research RWTH Aachen University Aachen Germany
We present a method to classify images into different categories of pornographic content to create a system for filtering pornographic images from network traffic. Although different systems for this application were ... 详细信息
来源: 评论
Unsupervised adaptation of a denoising autoencoder by Bayesian Feature Enhancement for reverberant asr under mismatch conditions  40
Unsupervised adaptation of a denoising autoencoder by Bayesi...
收藏 引用
40th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2015
作者: Heymann, Jahn Haeb-Umbach, Reinhold Golik, Pavel Schluter, Ralf University of Paderborn Department of Communications Engineering Paderborn Germany RWTH Aachen University Human Language Technology and Pattern Recognition Computer Science Department Aachen Aachen Germany
The parametric Bayesian Feature Enhancement (BFE) and a datadriven Denoising Autoencoder (DA) both bring performance gains in severe single-channel speech recognition conditions. The first can be adjusted to different... 详细信息
来源: 评论
Investigations on hessian-free optimization for cross-entropy training of deep neural networks
Investigations on hessian-free optimization for cross-entrop...
收藏 引用
14th Annual Conference of the International Speech Communication Association, INTERSPEECH 2013
作者: Wiesler, Simon Li, Jinyu Xue, Jian Computer Science Department Human Language Technology and Pattern Recognition RWTH Aachen University 52056 Aachen Germany Microsoft Corporation Redmond WA 98052 United States
Context-dependent deep neural network HMMs have been shown to achieve recognition accuracy superior to Gaussian mixture models in a number of recent works. Typically, neural networks are optimized with stochastic grad... 详细信息
来源: 评论
Controllable Factuality in Document-Grounded Dialog Systems Using a Noisy Channel Model
Controllable Factuality in Document-Grounded Dialog Systems ...
收藏 引用
2022 Findings of the Association for Computational Linguistics: EMNLP 2022
作者: Daheim, Nico Thulke, David Dugast, Christian Ney, Hermann Ubiquitous Knowledge Processing Lab Department of Computer Science Technical University of Darmstadt Germany Human Language Technology and Pattern Recognition RWTH Aachen University Germany AppTek GmbH
In this work, we present a model for document-grounded response generation in dialog that is decomposed into two components according to Bayes' theorem. One component is a traditional ungrounded response generatio... 详细信息
来源: 评论