咨询与建议

限定检索结果

文献类型

  • 145 篇 会议
  • 79 篇 期刊文献

馆藏范围

  • 224 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 161 篇 工学
    • 116 篇 计算机科学与技术...
    • 102 篇 软件工程
    • 47 篇 信息与通信工程
    • 16 篇 电气工程
    • 15 篇 电子科学与技术(可...
    • 14 篇 控制科学与工程
    • 13 篇 机械工程
    • 6 篇 生物工程
    • 5 篇 化学工程与技术
    • 5 篇 生物医学工程(可授...
    • 3 篇 光学工程
    • 3 篇 交通运输工程
    • 2 篇 动力工程及工程热...
  • 101 篇 理学
    • 74 篇 物理学
    • 39 篇 数学
    • 19 篇 统计学(可授理学、...
    • 12 篇 系统科学
    • 7 篇 生物学
    • 5 篇 化学
  • 18 篇 管理学
    • 11 篇 图书情报与档案管...
    • 5 篇 管理科学与工程(可...
    • 3 篇 工商管理
    • 2 篇 公共管理
  • 4 篇 法学
    • 4 篇 社会学
  • 4 篇 医学
    • 4 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 公共卫生与预防医...
  • 2 篇 文学
    • 2 篇 新闻传播学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 教育学
    • 1 篇 体育学
  • 1 篇 农学

主题

  • 51 篇 speech recogniti...
  • 15 篇 training
  • 14 篇 hidden markov mo...
  • 13 篇 neural machine t...
  • 12 篇 machine translat...
  • 12 篇 decoding
  • 12 篇 transducers
  • 11 篇 computer aided l...
  • 9 篇 error analysis
  • 9 篇 recurrent neural...
  • 8 篇 speech
  • 8 篇 feature extracti...
  • 8 篇 neural network
  • 7 篇 modelling langua...
  • 7 篇 vocabulary
  • 7 篇 humans
  • 6 篇 handwriting reco...
  • 6 篇 automatic speech...
  • 5 篇 hierarchical sys...
  • 5 篇 modeling languag...

机构

  • 40 篇 human language t...
  • 37 篇 apptek gmbh aach...
  • 32 篇 human language t...
  • 20 篇 human language t...
  • 10 篇 human language t...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 7 篇 spoken language ...
  • 7 篇 apptek gmbh aach...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 5 篇 pattern recognit...
  • 5 篇 human language t...
  • 5 篇 future technolog...
  • 4 篇 human language t...
  • 4 篇 institute of res...
  • 4 篇 school of medici...
  • 3 篇 human language t...

作者

  • 140 篇 ney hermann
  • 55 篇 schlüter ralf
  • 36 篇 hermann ney
  • 16 篇 zeyer albert
  • 16 篇 zhou wei
  • 15 篇 ralf schluter
  • 14 篇 gao yingbo
  • 12 篇 ralf schlüter
  • 12 篇 mansour saab
  • 12 篇 zeineldeen moham...
  • 12 篇 michel wilfried
  • 12 篇 zens richard
  • 11 篇 herold christian
  • 10 篇 bahar parnia
  • 10 篇 peitz stephan
  • 9 篇 peter jan-thorst...
  • 9 篇 schluter ralf
  • 9 篇 freitag markus
  • 9 篇 wang weiyue
  • 8 篇 wuebker joern

语言

  • 224 篇 英文
检索条件"机构=Human Language Technology and Pattern Recognition Computer Science Department"
224 条 记 录,以下是181-190 订阅
Morpheme based Factored language Models for German LVCSR
Morpheme based Factored Language Models for German LVCSR
收藏 引用
12th Annual Conference of the International Speech Communication Association, INTERSPEECH 2011
作者: El-Desoky Mousa, Amr Ali Basha Shaik, M. Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University 52056 Aachen Germany
German is a highly inflectional language, where a large number of words can be generated from the same root. It makes a liberal use of compounding leading to high Out-of-vocabulary (OOV) rates, and poor language Model... 详细信息
来源: 评论
The RWTH Aachen Machine Translation System for IWSLT 2011  8
The RWTH Aachen Machine Translation System for IWSLT 2011
收藏 引用
8th International Workshop on Spoken language Translation, IWSLT 2011
作者: Wuebker, Joern Huck, Matthias Mansour, Saab Freitag, Markus Feng, Minwei Peitz, Stephan Schmidt, Christoph Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University Aachen Germany
In this paper the statistical machine translation (SMT) systems of RWTH Aachen University developed for the evaluation campaign of the International Workshop on Spoken language Translation (IWSLT) 2011 is presented. W... 详细信息
来源: 评论
THE RWTH 2010 QUAERO ASR EVALUATION SYSTEM FOR ENGLISH, FRENCH, AND GERMAN
THE RWTH 2010 QUAERO ASR EVALUATION SYSTEM FOR ENGLISH, FREN...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: M. Sundermeyer M. Nussbaum-Thom S. Wiesler C. Plahl A. El-Desoky Mousa S. Hahn D. Nolden R. Schluter H. Ney Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University
Recognizing Broadcast Conversational (BC) speech data is a difficult task, which can be regarded as one of the major challenges beyond the recognition of Broadcast News (BN). This paper presents the automatic speech r... 详细信息
来源: 评论
Powerful extensions to CRFS for grapheme to phoneme conversion
Powerful extensions to CRFS for grapheme to phoneme conversi...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Stefan Hahn Patrick Lehnen Hermann Ney Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
Conditional Random Fields (CRFs) have proven to per form well on natural language processing tasks like name transliteration, concept tagging or grapheme-to-phoneme (g2p) conversion. The aim of this paper is to propos... 详细信息
来源: 评论
A comparative analysis of dynamic network decoding
A comparative analysis of dynamic network decoding
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: David Rybach Ralf Schlüter Hermann Ney Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
The use of statically compiled search networks for ASR systems using huge vocabularies and complex language models often becomes challenging in terms of memory requirements. Dynamic network decoders introduce addition... 详细信息
来源: 评论
Hierarchical hybrid MLP/HMM or rather MLP features for a discriminatively trained Gaussian HMM: A comparison for offline handwriting recognition
Hierarchical hybrid MLP/HMM or rather MLP features for a dis...
收藏 引用
IEEE International Conference on Image Processing
作者: Philippe Dreuw Patrick Doetsch Christian Plahl Hermann Ney Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
We use neural network based features extracted by a hierarchical multilayer-perceptron (MLP) network either in a hybrid MLP/HMM approach or to discriminatively retrain a Gaussian hidden Markov model (GHMM) system in a... 详细信息
来源: 评论
EM-style optimization of hidden conditional random fields for grapheme-to-phoneme conversion
EM-style optimization of hidden conditional random fields fo...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Georg Heigold Stefan Hahn Patrick Lehnen Hermann Ney Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
We have recently proposed an EM-style algorithm to optimize log-linear models with hidden variables. In this paper, we use this algorithm to optimize a hidden conditional random field, i.e., a conditional random field... 详细信息
来源: 评论
Feature selection for log-linear acoustic models
Feature selection for log-linear acoustic models
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: S. Wiesler A. Richard Y. Kubo R. Schlüter H. Ney Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
Log-linear acoustic models have been shown to be competitive with Gaussian mixture models in speech recognition. Their high training time can be reduced by feature selection. We compare a simple univariate feature sel... 详细信息
来源: 评论
Incorporating alignments into Conditional Random Fields for grapheme to phoneme conversion
Incorporating alignments into Conditional Random Fields for ...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Patrick Lehnen Stefan Hahn Andreas Guta Hermann Ney Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
Conditional Random Fields (CRFs) are a state-of-the-art approach to natural language processing tasks like grapheme-to phoneme (g2p) conversion which is used to produce pronunciations or pronunciation variants for alm... 详细信息
来源: 评论
Non-stationary feature extraction for automatic speech recognition
Non-stationary feature extraction for automatic speech recog...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Zoltán Tüske Pavel Golik Ralf Schlüter Friedhelm R. Drepper Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany Zentralinstitut für Elektronik Forschungszentrum Jülich (KFA) Julich Germany
In current speech recognition systems mainly Short-Time Fourier Transform based features like MFCC are applied. Dropping the short-time stationarity assumption of the voiced speech, this paper introduces the non-stati... 详细信息
来源: 评论