咨询与建议

限定检索结果

文献类型

  • 145 篇 会议
  • 79 篇 期刊文献

馆藏范围

  • 224 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 161 篇 工学
    • 116 篇 计算机科学与技术...
    • 102 篇 软件工程
    • 47 篇 信息与通信工程
    • 16 篇 电气工程
    • 15 篇 电子科学与技术(可...
    • 14 篇 控制科学与工程
    • 13 篇 机械工程
    • 6 篇 生物工程
    • 5 篇 化学工程与技术
    • 5 篇 生物医学工程(可授...
    • 3 篇 光学工程
    • 3 篇 交通运输工程
    • 2 篇 动力工程及工程热...
  • 101 篇 理学
    • 74 篇 物理学
    • 39 篇 数学
    • 19 篇 统计学(可授理学、...
    • 12 篇 系统科学
    • 7 篇 生物学
    • 5 篇 化学
  • 18 篇 管理学
    • 11 篇 图书情报与档案管...
    • 5 篇 管理科学与工程(可...
    • 3 篇 工商管理
    • 2 篇 公共管理
  • 4 篇 法学
    • 4 篇 社会学
  • 4 篇 医学
    • 4 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 公共卫生与预防医...
  • 2 篇 文学
    • 2 篇 新闻传播学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 教育学
    • 1 篇 体育学
  • 1 篇 农学

主题

  • 51 篇 speech recogniti...
  • 15 篇 training
  • 14 篇 hidden markov mo...
  • 13 篇 neural machine t...
  • 12 篇 machine translat...
  • 12 篇 decoding
  • 12 篇 transducers
  • 11 篇 computer aided l...
  • 9 篇 error analysis
  • 9 篇 recurrent neural...
  • 8 篇 speech
  • 8 篇 feature extracti...
  • 8 篇 neural network
  • 7 篇 modelling langua...
  • 7 篇 vocabulary
  • 7 篇 humans
  • 6 篇 handwriting reco...
  • 5 篇 hierarchical sys...
  • 5 篇 modeling languag...
  • 5 篇 signal processin...

机构

  • 40 篇 human language t...
  • 37 篇 apptek gmbh aach...
  • 32 篇 human language t...
  • 20 篇 human language t...
  • 10 篇 human language t...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 7 篇 spoken language ...
  • 7 篇 apptek gmbh aach...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 5 篇 pattern recognit...
  • 5 篇 human language t...
  • 5 篇 future technolog...
  • 4 篇 human language t...
  • 4 篇 institute of res...
  • 4 篇 school of medici...
  • 3 篇 human language t...

作者

  • 140 篇 ney hermann
  • 55 篇 schlüter ralf
  • 36 篇 hermann ney
  • 16 篇 zeyer albert
  • 16 篇 zhou wei
  • 15 篇 ralf schluter
  • 14 篇 gao yingbo
  • 12 篇 ralf schlüter
  • 12 篇 mansour saab
  • 12 篇 zeineldeen moham...
  • 12 篇 michel wilfried
  • 12 篇 zens richard
  • 11 篇 herold christian
  • 10 篇 bahar parnia
  • 10 篇 peitz stephan
  • 9 篇 peter jan-thorst...
  • 9 篇 schluter ralf
  • 9 篇 freitag markus
  • 9 篇 wang weiyue
  • 8 篇 wuebker joern

语言

  • 224 篇 英文
检索条件"机构=Human Language Technology and Pattern Recognition Computer Science Department"
224 条 记 录,以下是191-200 订阅
排序:
Confidence scores for acoustic model adaptation
Confidence scores for acoustic model adaptation
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Christian Gollan Michiel Bacchiani Human Language Technology and Pattern Recognition Computer Science Department 6 RWTH Aachen University Germany Google Inc. New York NY USA
This paper focuses on confidence scores for use in acoustic model adaptation. Frame-based confidence estimates are used in linear transform (CMLLR and MLLR) and MAP adaptation. We show that adaptation approaches with ... 详细信息
来源: 评论
On architectures and training for raw waveform feature extraction in ASR
arXiv
收藏 引用
arXiv 2021年
作者: Vieting, Peter Lüscher, Christoph Michel, Wilfried Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
With the success of neural network based modeling in automatic speech recognition (ASR), many studies investigated acoustic modeling and learning of feature extractors directly based on the raw waveform. Recently, one... 详细信息
来源: 评论
On sampling-based training criteria for neural language modeling
arXiv
收藏 引用
arXiv 2021年
作者: Gao, Yingbo Thulke, David Gerstenberger, Alexander Tran, Khoa Viet Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department Rwth Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
As the vocabulary size of modern word-based language models becomes ever larger, many sampling-based training criteria are proposed and investigated. The essence of these sampling methods is that the softmax-related t... 详细信息
来源: 评论
Two-way neural machine translation: A proof of concept for bidirectional translation modeling using a two-dimensional grid
arXiv
收藏 引用
arXiv 2020年
作者: Bahar, Parnia Brix, Christopher Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
Neural translation models have proven to be effective in capturing sufficient information from a source sentence and generating a high-quality target sentence. However, it is not easy to get the best effect for bidire... 详细信息
来源: 评论
Self-Normalized Importance Sampling for Neural language Modeling
arXiv
收藏 引用
arXiv 2021年
作者: Yang, Zijian Gao, Yingbo Gerstenberger, Alexander Jiang, Jintao Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
To mitigate the problem of having to traverse over the full vocabulary in the softmax normalization of a neural language model, sampling-based training criteria are proposed and investigated in the context of large vo... 详细信息
来源: 评论
language modeling with deep transformers
arXiv
收藏 引用
arXiv 2019年
作者: Irie, Kazuki Zeyer, Albert Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
We explore deep autoregressive Transformer models in language modeling for speech recognition. We focus on two aspects. First, we revisit Transformer model configurations specifically for language modeling. We show th... 详细信息
来源: 评论
Tight integrated end-to-end training for cascaded speech translation
arXiv
收藏 引用
arXiv 2020年
作者: Bahar, Parnia Bieschke, Tobias Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
A cascaded speech translation model relies on discrete and non-differentiable transcription, which provides a supervision signal from the source side and helps the transformation between source speech and target text.... 详细信息
来源: 评论
ROBUST KNOWLEDGE DISTILLATION FROM RNN-T MODELS WITH NOISY TRAINING LABELS USING FULL-SUM LOSS
arXiv
收藏 引用
arXiv 2023年
作者: Zeineldeen, Mohammad Audhkhasi, Kartik Baskar, Murali Karthick Ramabhadran, Bhuvana Human Language Technology and Pattern Recognition Computer Science Department Rwth Aachen University Aachen52074 Germany Google Llc New York United States
This work studies knowledge distillation (KD) and addresses its constraints for recurrent neural network transducer (RNNT) models. In hard distillation, a teacher model transcribes large amounts of unlabelled speech t... 详细信息
来源: 评论
Non-stationary feature extraction for automatic speech recognition
Non-stationary feature extraction for automatic speech recog...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Zoltán Tüske Pavel Golik Ralf Schlüter Friedhelm R. Drepper Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany Zentralinstitut für Elektronik Forschungszentrum Jülich (KFA) Julich Germany
In current speech recognition systems mainly Short-Time Fourier Transform based features like MFCC are applied. Dropping the short-time stationarity assumption of the voiced speech, this paper introduces the non-stati... 详细信息
来源: 评论
On the choice of modeling unit for sequence-to-sequence speech recognition
arXiv
收藏 引用
arXiv 2019年
作者: Irie, Kazuki Prabhavalkar, Rohit Kannan, Anjuli Bruguier, Antoine Rybach, David Nguyen, Patrick Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany Google Mountain ViewCA94043 United States
来源: 评论