咨询与建议

限定检索结果

文献类型

  • 285 篇 会议
  • 113 篇 期刊文献

馆藏范围

  • 398 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 271 篇 工学
    • 196 篇 计算机科学与技术...
    • 179 篇 软件工程
    • 71 篇 信息与通信工程
    • 22 篇 生物工程
    • 20 篇 机械工程
    • 17 篇 电气工程
    • 17 篇 控制科学与工程
    • 15 篇 电子科学与技术(可...
    • 12 篇 光学工程
    • 10 篇 化学工程与技术
    • 9 篇 生物医学工程(可授...
    • 3 篇 仪器科学与技术
    • 3 篇 动力工程及工程热...
    • 2 篇 材料科学与工程(可...
    • 2 篇 土木工程
  • 169 篇 理学
    • 111 篇 物理学
    • 69 篇 数学
    • 39 篇 统计学(可授理学、...
    • 26 篇 生物学
    • 20 篇 系统科学
    • 11 篇 化学
  • 39 篇 管理学
    • 28 篇 图书情报与档案管...
    • 10 篇 管理科学与工程(可...
    • 4 篇 工商管理
    • 2 篇 公共管理
  • 6 篇 法学
    • 5 篇 社会学
  • 4 篇 医学
    • 4 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 公共卫生与预防医...
  • 2 篇 文学
    • 2 篇 外国语言文学
  • 1 篇 经济学
  • 1 篇 教育学
  • 1 篇 农学
  • 1 篇 艺术学

主题

  • 66 篇 speech recogniti...
  • 40 篇 training
  • 38 篇 hidden markov mo...
  • 29 篇 neural machine t...
  • 25 篇 machine translat...
  • 20 篇 decoding
  • 19 篇 handwriting reco...
  • 18 篇 computer aided l...
  • 16 篇 recurrent neural...
  • 15 篇 feature extracti...
  • 15 篇 transducers
  • 14 篇 vocabulary
  • 12 篇 databases
  • 12 篇 error analysis
  • 11 篇 speech
  • 10 篇 pattern recognit...
  • 10 篇 humans
  • 9 篇 training data
  • 9 篇 optimization
  • 9 篇 context

机构

  • 52 篇 human language t...
  • 40 篇 human language t...
  • 37 篇 apptek gmbh aach...
  • 32 篇 human language t...
  • 31 篇 human language t...
  • 23 篇 apptek gmbh aach...
  • 20 篇 human language t...
  • 16 篇 human language t...
  • 13 篇 human language t...
  • 12 篇 pattern recognit...
  • 10 篇 human language t...
  • 9 篇 spoken language ...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 7 篇 pattern recognit...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 5 篇 a2ia sa

作者

  • 210 篇 ney hermann
  • 80 篇 hermann ney
  • 61 篇 schlüter ralf
  • 22 篇 ralf schluter
  • 21 篇 ralf schlüter
  • 20 篇 casacuberta fran...
  • 19 篇 wuebker joern
  • 18 篇 zeyer albert
  • 17 篇 zhou wei
  • 16 篇 gao yingbo
  • 14 篇 kim yunsu
  • 14 篇 herold christian
  • 13 篇 mansour saab
  • 13 篇 zeineldeen moham...
  • 13 篇 patrick doetsch
  • 12 篇 peris álvaro
  • 12 篇 peter jan-thorst...
  • 12 篇 michel wilfried
  • 12 篇 peitz stephan
  • 12 篇 huck matthias

语言

  • 396 篇 英文
  • 1 篇 西班牙文
  • 1 篇 中文
检索条件"机构=Human Language Technology and Pattern Recognition Group"
398 条 记 录,以下是1-10 订阅
排序:
The Conformer Encoder May Reverse the Time Dimension
The Conformer Encoder May Reverse the Time Dimension
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Robin Schmitt Albert Zeyer Mohammad Zeineldeen Ralf Schlűter Hermann Ney Computer Science Department Human Language Technology and Pattern Recognition RWTH Aachen University Aachen Germany AppTek GmbH Aachen Germany
We sometimes observe monotonically decreasing cross-attention weights in our Conformer-based global attention-based encoder-decoder (AED) models, negatively affecting performance compared to monotonically increasing a... 详细信息
来源: 评论
A Deep Learning Approach to Machine Transliteration  4
A Deep Learning Approach to Machine Transliteration
收藏 引用
4th Workshop on Statistical Machine Translation, WMT 2009, immediately preceding the 12th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2009
作者: Deselaers, Thomas Hasan, Sǎsa Bender, Oliver Ney, Hermann Human Language Technology And Pattern Recognition Group RWTH Aachen University Germany
In this paper we present a novel transliteration technique which is based on deep belief networks. Common approaches use finite state machines or other methods similar to conventional machine translation. Instead of u... 详细信息
来源: 评论
Comparison of extended lexicon models in search and rescoring for SMT
Comparison of extended lexicon models in search and rescorin...
收藏 引用
2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics: human language Technologies, NAACL-HLT 2009
作者: Hasan, Saša Ney, Hermann Human Language Technology and Pattern Recognition Group RWTH Aachen University Germany
We show how the integration of an extended lexicon model into the decoder can improve translation performance. The model is based on lexical triggers that capture long-distance dependencies on the sentence level. The ...
来源: 评论
A source-side decoding sequence model for statistical machine translation
A source-side decoding sequence model for statistical machin...
收藏 引用
9th Biennial Conference of the Association for Machine Translation in the Americas, AMTA 2010
作者: Feng, Minwei Mauser, Arne Ney, Hermann Human Language Technology and Pattern Recognition Group RWTH Aachen University Germany
We propose a source-side decoding sequence language model for phrase-based statistical machine translation. This model is a reordering model in the sense that it helps the decoder find the correct decoding sequence. T... 详细信息
来源: 评论
Unsupervised training for large vocabulary translation using sparse lexicon andword classes  15
Unsupervised training for large vocabulary translation using...
收藏 引用
15th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2017
作者: Kim, Yunsu Schamper, Julian Ney, Hermann Human Language Technology and Pattern Recognition Group RWTH Aachen University Germany
We address for the first time unsupervised training for a translation task with hundreds of thousands of vocabulary words. We scale up the expectation-maximization (EM) algorithm to learn a large translation table wit... 详细信息
来源: 评论
Deciphering foreign language by combining language models and context vectors
Deciphering foreign language by combining language models an...
收藏 引用
50th Annual Meeting of the Association for Computational Linguistics, ACL 2012
作者: Nuhn, Malte Mauser, Arne Ney, Hermann Human Language Technology and Pattern Recognition Group RWTH Aachen University Germany
In this paper we show how to train statistical machine translation systems on reallife tasks using only non-parallel monolingual data from two languages. We present a modification of the method shown in (Ravi and Knig... 详细信息
来源: 评论
Extensions of the Sign language recognition and Translation Corpus RWTH-PHOENIX-Weather  9
Extensions of the Sign Language Recognition and Translation ...
收藏 引用
9th International Conference on language Resources and Evaluation (LREC)
作者: Forster, Jens Schmidt, Christoph Koller, Oscar Bellgardt, Martin Ney, Hermann Human Language Technology and Pattern Recognition RWTH Aachen University Germany
This paper introduces the RWTH-PHOENIX-Weather 2014, a video-based, large vocabulary, German sign language corpus which has been extended over the last two years, tripling the size of the original corpus. The corpus c... 详细信息
来源: 评论
A comparison of update strategies for large-scale maximum expected BLEU training
A comparison of update strategies for large-scale maximum ex...
收藏 引用
Conference of the North American Chapter of the Association for Computational Linguistics: human language Technologies, NAACL HLT 2015
作者: Wuebker, Joern Muehr, Sebastian Lehnen, Patrick Peitz, Stephan Ney, Hermann Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen Germany
This work presents a flexible and efficient discriminative training approach for statistical machine translation. We propose to use the RPROP algorithm for optimizing a maximum expected BLEU objective and experimental... 详细信息
来源: 评论
When and Why is Unsupervised Neural Machine Translation Useless?  22
When and Why is Unsupervised Neural Machine Translation Usel...
收藏 引用
22nd Annual Conference of the European Association for Machine Translation, EAMT 2020
作者: Kim, Yunsu Graça, Miguel Ney, Hermann Human Language Technology and Pattern Recognition Group Rwth Aachen University Aachen Germany
This paper studies the practicality of the current state-of-the-art unsupervised methods in neural machine translation (NMT). In ten translation tasks with various data settings, we analyze the conditions under which ... 详细信息
来源: 评论
Phrase Model Training for Statistical Machine Translation with Word Lattices of Preprocessing Alternatives  7
Phrase Model Training for Statistical Machine Translation wi...
收藏 引用
7th Workshop on Statistical Machine Translation, WMT 2012, immediately following the Conference of the North-American Chapter of the Association for Computational Linguistics - human language Technologies, NAACL HLT 2012
作者: Wuebker, Joern Ney, Hermann Human Language Technology And Pattern Recognition Group Rwth Aachen University Aachen Germany
In statistical machine translation, word lattices are used to represent the ambiguities in the preprocessing of the source sentence, such as word segmentation for Chinese or morphological analysis for German. Several ... 详细信息
来源: 评论