咨询与建议

限定检索结果

文献类型

  • 146 篇 会议
  • 68 篇 期刊文献

馆藏范围

  • 214 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 151 篇 工学
    • 111 篇 计算机科学与技术...
    • 98 篇 软件工程
    • 44 篇 信息与通信工程
    • 13 篇 控制科学与工程
    • 12 篇 电气工程
    • 11 篇 电子科学与技术(可...
    • 8 篇 机械工程
    • 6 篇 生物工程
    • 5 篇 化学工程与技术
    • 5 篇 生物医学工程(可授...
    • 4 篇 光学工程
    • 2 篇 动力工程及工程热...
  • 101 篇 理学
    • 75 篇 物理学
    • 38 篇 数学
    • 19 篇 统计学(可授理学、...
    • 12 篇 系统科学
    • 7 篇 生物学
    • 5 篇 化学
    • 1 篇 地球物理学
  • 17 篇 管理学
    • 11 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
    • 3 篇 工商管理
    • 2 篇 公共管理
  • 4 篇 医学
    • 4 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 公共卫生与预防医...
  • 3 篇 法学
    • 2 篇 社会学
    • 1 篇 法学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 教育学
    • 1 篇 体育学
  • 1 篇 农学

主题

  • 51 篇 speech recogniti...
  • 15 篇 hidden markov mo...
  • 15 篇 training
  • 13 篇 neural machine t...
  • 12 篇 machine translat...
  • 12 篇 transducers
  • 11 篇 computer aided l...
  • 11 篇 decoding
  • 9 篇 recurrent neural...
  • 8 篇 speech
  • 8 篇 feature extracti...
  • 8 篇 neural network
  • 8 篇 error analysis
  • 7 篇 modelling langua...
  • 6 篇 vocabulary
  • 6 篇 optimization
  • 6 篇 handwriting reco...
  • 6 篇 humans
  • 6 篇 automatic speech...
  • 5 篇 hierarchical sys...

机构

  • 40 篇 human language t...
  • 37 篇 apptek gmbh aach...
  • 32 篇 human language t...
  • 20 篇 human language t...
  • 10 篇 human language t...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 7 篇 spoken language ...
  • 7 篇 apptek gmbh aach...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 5 篇 human language t...
  • 4 篇 human language t...
  • 3 篇 human language t...
  • 3 篇 rwth aachen univ...
  • 3 篇 limsi cnrs spoke...
  • 3 篇 human language t...
  • 2 篇 computer vision ...

作者

  • 141 篇 ney hermann
  • 55 篇 schlüter ralf
  • 36 篇 hermann ney
  • 16 篇 zeyer albert
  • 16 篇 zhou wei
  • 14 篇 gao yingbo
  • 14 篇 ralf schluter
  • 12 篇 ralf schlüter
  • 12 篇 mansour saab
  • 12 篇 zeineldeen moham...
  • 12 篇 michel wilfried
  • 12 篇 zens richard
  • 11 篇 herold christian
  • 10 篇 bahar parnia
  • 10 篇 peitz stephan
  • 9 篇 peter jan-thorst...
  • 9 篇 schluter ralf
  • 9 篇 freitag markus
  • 9 篇 wang weiyue
  • 8 篇 wuebker joern

语言

  • 214 篇 英文
检索条件"机构=Human Language Technology and Pattern Recognition Group Computer Science"
214 条 记 录,以下是131-140 订阅
排序:
Feature selection for log-linear acoustic models
Feature selection for log-linear acoustic models
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: S. Wiesler A. Richard Y. Kubo R. Schlüter H. Ney Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
Log-linear acoustic models have been shown to be competitive with Gaussian mixture models in speech recognition. Their high training time can be reduced by feature selection. We compare a simple univariate feature sel... 详细信息
来源: 评论
Incorporating alignments into Conditional Random Fields for grapheme to phoneme conversion
Incorporating alignments into Conditional Random Fields for ...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Patrick Lehnen Stefan Hahn Andreas Guta Hermann Ney Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
Conditional Random Fields (CRFs) are a state-of-the-art approach to natural language processing tasks like grapheme-to phoneme (g2p) conversion which is used to produce pronunciations or pronunciation variants for alm... 详细信息
来源: 评论
RASR/NN: THE RWTH NEURAL NETWORK TOOLKIT FOR SPEECH recognition
RASR/NN: THE RWTH NEURAL NETWORK TOOLKIT FOR SPEECH RECOGNIT...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Simon Wiesler Alexander Richard Pavel Golik Ralf Schluter Hermann Ney Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
This paper describes the new release of RASR - the open source version of the well-proven speech recognition toolkit developed and used at RWTH Aachen University. The focus is put on the implementation of the NN modul... 详细信息
来源: 评论
Speaker adapted beamforming for multi-channel automatic speech recognition
arXiv
收藏 引用
arXiv 2018年
作者: Menne, Tobias Schluter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
This paper presents, in the context of multi-channel ASR, a method to adapt a mask based, statistically optimal beamforming approach to a speaker of interest. The beamforming vector of the statistically optimal beamfo... 详细信息
来源: 评论
Efficient Utilization of Large Pre-Trained Models for Low Resource ASR
Efficient Utilization of Large Pre-Trained Models for Low Re...
收藏 引用
Acoustics, Speech, and Signal Processing Workshops (ICASSPW), IEEE International Conference on
作者: Peter Vieting Christoph Lüscher Julian Dierkes Ralf Schlüter Hermann Ney Computer Science Department Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen Germany AppTek GmbH Aachen Germany
Unsupervised representation learning has recently helped automatic speech recognition (ASR) to tackle tasks with limited labeled data. Following this, hardware limitations and applications give rise to the question ho...
来源: 评论
Comparison of lattice-free and lattice-based sequence discriminative training criteria for LVCSR
arXiv
收藏 引用
arXiv 2019年
作者: Michel, Wilfried Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52056 Germany
Sequence discriminative training criteria have long been a standard tool in automatic speech recognition for improving the performance of acoustic models over their maximum likelihood / cross entropy trained counterpa... 详细信息
来源: 评论
DEEP HIERARCHICAL BOTTLENECK MRASTA FEATURES FOR LVCSR
DEEP HIERARCHICAL BOTTLENECK MRASTA FEATURES FOR LVCSR
收藏 引用
IEEE International Conference on Acoustics, Speech, and Signal Processing
作者: Zoltan Tuske Ralf Schluter Hermann Ney Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University 52056 Aachen Germany
Hierarchical Multi Layer Perceptron (MLP) based long-term feature extraction is optimized for TANDEM connectionist large vocabulary continuous speech recognition (LVCSR) system within the QUAERO project. Training the ... 详细信息
来源: 评论
ACOUSTIC MODELING OF SPEECH WAVEFORM BASED ON MULTI-RESOLUTION, NEURAL NETWORK SIGNAL PROCESSING
ACOUSTIC MODELING OF SPEECH WAVEFORM BASED ON MULTI-RESOLUTI...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Zoltán Tüske Ralf Schlüter Hermann Ney Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University 52056 Aachen Germany
Recently, several papers have demonstrated that neural networks (NN) are able to perform the feature extraction as part of the acoustic model. Motivated by the Gammatone feature extraction pipeline, in this paper we e... 详细信息
来源: 评论
MULTILINGUAL MRASTA FEATURES FOR LOW-RESOURCE KEYWORD SEARCH AND SPEECH recognition SYSTEMS
MULTILINGUAL MRASTA FEATURES FOR LOW-RESOURCE KEYWORD SEARCH...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Zoltan Tuske David Nolden Ralf Schluter Hermann Ney Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University 52056 Aachen Germany
This paper investigates the application of hierarchical MRASTA bottleneck (BN) features for under-resourced languages within the IARPA Babel project. Through multilingual training of Multilayer Perceptron (MLP) BN fea... 详细信息
来源: 评论
COMPARISON OF FEEDFORWARD AND RECURRENT NEURAL NETWORK language MODELS
COMPARISON OF FEEDFORWARD AND RECURRENT NEURAL NETWORK LANGU...
收藏 引用
IEEE International Conference on Acoustics, Speech, and Signal Processing
作者: M. Sundermeyer I. Oparin J.-L. Gauvain B. Freiberg R. Schluter H. Ney Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany Spoken Language Processing Group LIMSI CNRS Paris France
Research on language modeling for speech recognition has increasingly focused on the application of neural networks. Two competing concepts have been developed: On the one hand, feedforward neural networks representin... 详细信息
来源: 评论